Airborne Short-Baseline Millimeter Wave InSAR System Analysis and Experimental Results
Abstract
:1. Introduction
2. Design and Analysis
2.1. Baseline Design
2.1.1. Antenna Mount Analysis
2.1.2. Baseline Length Limit
2.2. Elevation Error
2.3. Coherence
2.3.1. Decorrelation
- Baseline Decorrelation
- 2.
- Doppler Decorrelation
- 3.
- Thermal Noise Decorrelation
2.3.2. Motion Error Analysis
2.3.3. Coherence Analysis
3. System Description
- Antennas
- 2.
- Integrated Electronic Unit
- 3.
- Integrated Processing Unit
4. Experiment and Interferometric Processing
4.1. Flight Experiment Areas
4.2. Interferometric Processing
- Unwrapping
- 2.
- Generation and Splicing of DOM and DSM
5. Results
5.1. Result of Evaluation Accuracy
5.2. Results of DOM and DSM
6. Conclusions and Discussion
- Short-baseline airborne InSAR is capable of combining elevation accuracy and coherence. ASMIS has obtained the correlation coefficient of better than 0.95 within 81% of the area in mountainous areas. By designing a few GCPs in the Chengde experimental area, ASMIS realizes the requirement of 1:5000 topographic mapping. The coordinate RMSE of the checkpoints within the obtained DSM is less than 0.82 m in altitude and 3 m horizontally. The RMSE of the GCPs within the obtained DSM is less than 0.3 m in altitude.
- The motion inconsistency error of short-baseline InSAR can be ignored to some extent. The processing directly compensates for the motion consistency of the reference and secondary antennas, which can simplify the algorithm to improve efficiency.
- The multiple work modes of ASMIS have obtained great experimental results, including 0.1 m × 0.1 m (azimuth × range) resolution imaging, and 0.3 m × 0.3 m (azimuth × range) resolution wide-swath imaging.
- Undulating terrains can cause shadow, but the antiparallel flight experiments can provide an effective solution to this problem.
- In the elevation accuracy, a laser baseline measurement system can be considered to compensate for the deformation of the facilities. This can control the baseline length and angle errors to 0.1 mm and 0.002°, respectively, and further improve the elevation error according to the theoretical analysis.
- The experimental area data is multi-temporal, multi-angle, and multi-parameter. It can support more remote sensing applications such as feature classification and deformation assessment.
- At present, only the antiparallel flight data of the Chengde experimental area has been processed independently. Joint correction and splicing processing are needed in the future.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Schulz-Stellenfleth, J.; Lehner, S. Ocean wave imaging using an airborne single pass across-track interferometric SAR. IEEE Trans. Geosci. Remote Sens. 2001, 39, 38–45. [Google Scholar] [CrossRef]
- Rocca, F.; Prati, C.; Guarnieri, A.M.; Ferretti, A. Sar Interferometry And Its Applications. Surv. Geophys. 2000, 21, 159–176. [Google Scholar] [CrossRef]
- Hagberg, J.O.; Ulander, L.M.H. Repeat-pass SAR interferometry over forested terrain. IEEE Trans. Geosci. Remote Sens. 1995, 33, 331–340. [Google Scholar] [CrossRef]
- Hornacek, M.; Wagner, W.; Sabel, D.; Truong, H.L.; Snoeij, P.; Hahmann, T.; Diedrich, E.; Doubkova, M. Potential for High Resolution Systematic Global Surface Soil Moisture Retrieval via Change Detection Using Sentinel-1. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1303–1311. [Google Scholar] [CrossRef]
- Snoeij, P.; Attema, E.; Davidson, M.; Duesmann, B.; Floury, N.; Levrini, G.; Rommen, B.; Rosich, B. Sentinel-1 radar mission: Status and performance. IEEE Aerosp. Electron. Syst. Mag. 2010, 25, 32–39. [Google Scholar] [CrossRef]
- Zebker, H.A.; Werner, C.L.; Rosen, P.A.; Hensley, S. Accuracy of topographic maps derived from ERS-1 interferometric radar. IEEE Trans. Geosci. Remote Sens. 1994, 32, 823–836. [Google Scholar] [CrossRef]
- Rufino, G.; Moccia, A.; Esposito, S. DEM generation by means of ERS tandem data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1905–1912. [Google Scholar] [CrossRef]
- Roth, A.; Werninghaus, R. Status of the TerraSAR-X Mission. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 1918–1920. [Google Scholar]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef]
- Song, Y.; Sun, Z. Analysis and Verification of The Characteristics of The Sharp-Peaked and Heavy-Tailed of Gf-3 Sar Image. In Proceedings of the 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Xi’an, China, 18–20 June 2018; pp. 1–5. [Google Scholar]
- Hua, L.; Zhenning, L.; Kaiyu, L.; Mingshan, R.; Yunkai, D. The Present Situation and Development for Spaceborne Synthetic Aperture Radar Antenna Arrays. In Antenna Arrays; Hussain, M.A.-R., Nijas, K., Sulaiman, T., Aldebaro, K., Eds.; IntechOpen: Rijeka, Croatia, 2022; p. Ch.2. [Google Scholar]
- Wang, X.-G.; Wang, Z.-Q.; Yang, X.; Liu, W. Analysis of Spaceborne Dual-antenna InSAR System Characteristic Under Flexible Baseline Oscillation. J. Electron. Inf. Technol. 2011, 33, 1114–1118. [Google Scholar] [CrossRef]
- Eriksson, L.E.B.; Santoro, M.; Fransson, J.E.S. Temporal Decorrelation for Forested Areas Observed in Spaceborne L-band SAR Interferometry. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; pp. V-283–V-285. [Google Scholar]
- Ahmed, R.; Siqueira, P.; Hensley, S.; Chapman, B.; Bergen, K. A survey of temporal decorrelation from spaceborne L-Band repeat-pass InSAR. Remote Sens. Environ. 2011, 115, 2887–2896. [Google Scholar] [CrossRef]
- Younis, M.; Metzig, R.; Krieger, G. Performance prediction of a phase synchronization link for bistatic SAR. IEEE Geosci. Remote Sens. Lett. 2006, 3, 429–433. [Google Scholar] [CrossRef]
- Krieger, G.; Younis, M. Impact of oscillator noise in bistatic and multistatic SAR. IEEE Geosci. Remote Sens. Lett. 2006, 3, 424–428. [Google Scholar] [CrossRef]
- Rodriguez-Cassola, M.; Baumgartner, S.V.; Krieger, G.; Moreira, A. Bistatic TerraSAR-X/F-SAR Spaceborne–Airborne SAR Experiment: Description, Data Processing, and Results. IEEE Trans. Geosci. Remote Sens. 2010, 48, 781–794. [Google Scholar] [CrossRef]
- Kropatsch, W.G.; Strobl, D. The generation of SAR layover and shadow maps from digital elevation models. IEEE Trans. Geosci. Remote Sens. 1990, 28, 98–107. [Google Scholar] [CrossRef]
- Wen, N.; Zeng, F.; Dai, K.; Li, T.; Zhang, X.; Pirasteh, S.; Liu, C.; Xu, Q. Evaluating and Analyzing the Potential of the Gaofen-3 SAR Satellite for Landslide Monitoring. Remote Sens. 2022, 14, 4425. [Google Scholar] [CrossRef]
- Brenner, A.R.; Roessing, L. Radar Imaging of Urban Areas by Means of Very High-Resolution SAR and Interferometric SAR. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2971–2982. [Google Scholar] [CrossRef]
- Magnard, C.; Frioud, M.; Small, D.; Brehm, T.; Essen, H.; Meier, E. Processing of MEMPHIS Ka-Band Multibaseline Interferometric SAR Data: From Raw Data to Digital Surface Models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2927–2941. [Google Scholar] [CrossRef]
- Hensley, S.; Chapin, E.; Freedman, A.; Le, C.; Madsen, S.; Michel, T.; Rodriguez, E.; Siqueira, P.; Wheeler, K. First P-band results using the GeoSAR mapping system. In Proceedings of the IGARSS 2001, Scanning the Present and Resolving the Future, Proceedings, IEEE 2001 International Geo-science and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, NSW, Australia, 9–13 July 2001; Volume 121, pp. 126–128. [Google Scholar]
- Satake, M.; Matsuoka, T.; Umehara, T.; Kobayashi, T.; Nadai, A.; Uemoto, J.; Kojima, S.; Uratsuka, S. Calibration experiments of advanced X-band airborne SAR system, Pi-SAR2. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 933–936. [Google Scholar]
- Sun, L.; Zhang, C.; Hu, M. Perfermance analysis and data processing of the airborne X-band insar system. In Proceedings of the 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 5–9 November 2007; pp. 541–545. [Google Scholar]
- Li, D.-J.; Liu, B.; Pan, Z.-H.; Mao, Y.-F.; Qiao, M.; Teng, X.-M.; Li, L.-C. Airborne MMW InSAR Interferometry with Cross-Track Three-Baseline Antennas. In Proceedings of the 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012; pp. 301–303. [Google Scholar]
- Brozzetti, F.; Boncio, P.; Cirillo, D.; Ferrarini, F.; De Nardis, R.; Testa, A.; Liberi, F.; Lavecchia, G. High-Resolution Field Mapping and Analysis of the August–October 2016 Coseismic Surface Faulting (Central Italy Earthquakes): Slip Distribution, Parameterization, and Comparison with Global Earthquakes. Tectonics 2019, 38, 417–439. [Google Scholar] [CrossRef]
- Fernandez-Diaz, J.C.; Telling, J.; Glennie, C.; Shrestha, R.L.; Carter, W.E. Rapid change detection in a single pass of a multichannel airborne lidar. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1304–1307. [Google Scholar]
- Mora, O.E.; Lenzano, M.G.; Toth, C.K.; Grejner-Brzezinska, D.A.; Fayne, J.V. Landslide Change Detection Based on Multi-Temporal Airborne LiDAR-Derived DEMs. Geosciences 2018, 8, 23. [Google Scholar] [CrossRef]
- Jin, B.; Guo, J.; Wei, P.; Su, B.; He, D. Multi-baseline InSAR phase unwrapping method based on mixed-integer optimisation model. IET Radar Sonar Navig. 2018, 12, 694–701. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Wei, L.; Lu, Y.; Hu, Q. Radar Mapping Technology Based on Millimeter-wave Multi-baseline InSAR. J. Radars 2019, 8, 820. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, B.; Xiang, M.; Chen, L. Performance Analysis for Airborne Interferometric SAR Affected by Flexible Baseline Oscillation. J. Radars 2014, 3, 183. [Google Scholar] [CrossRef]
- Rodriguez, E.; Martin, J.M. Theory and design of interferometric synthetic aperture radars. IEE Proc. F Radar Signal Process. 1992, 139, 147–159. [Google Scholar] [CrossRef]
- Mallorqui, J.J.; Rosado, I.; Bara, M. Interferometric calibration for DEM enhancing and system characterization in single pass SAR interferometry. In Proceedings of the IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, NSW, Australia, 9–13 July 2001; Volume 401, pp. 404–406. [Google Scholar]
- Li, F.-F.; Qiu, X.-L.; Meng, D.-D.; Hu, D.-H.; Ding, C.-B. Effects of Motion Compensation Errors on Performance of Airborne Dual-antenna InSAR. J. Electron. Inf. Technol. 2013, 35, 559–567. [Google Scholar] [CrossRef]
- Gatelli, F.; Guamieri, A.M.; Parizzi, F.; Pasquali, P.; Prati, C.; Rocca, F. The wavenumber shift in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 1994, 32, 855–865. [Google Scholar] [CrossRef]
- Jong-Sen, L.; Papathanassiou, K.P.; Ainsworth, T.L.; Grunes, M.R.; Reigber, A. A new technique for noise filtering of SAR interferometric phase images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1456–1465. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry Data Interpretation and Error Analysis; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Esposito, C.; Natale, A.; Palmese, G.; Berardino, P.; Lanari, R.; Perna, S. On the Capabilities of the Italian Airborne FMCW AXIS InSAR System. Remote Sens. 2020, 12, 539. [Google Scholar] [CrossRef]
- Nagaraj, P. Impact of atmospheric impairments on mmWave based outdoor communication. arXiv 2018, arXiv:1806.05176. [Google Scholar]
- Ulaby, F.T.; Deventer, T.E.V.; East, J.R.; Haddock, T.F.; Coluzzi, M.E. Millimeter-wave bistatic scattering from ground and vegetation targets. IEEE Trans. Geosci. Remote Sens. 1988, 26, 229–243. [Google Scholar] [CrossRef]
- Alberga, V. A study of land cover classification using polarimetric SAR parameters. Int. J. Remote Sens. 2007, 28, 3851–3870. [Google Scholar] [CrossRef]
- Jakob van Zyl, Y.K. Basic Principles of SAR Polarimetry. In Synthetic Aperture Radar Polarimetry; Yuen, J.H., Ed.; Wiley: Hoboken, NJ, USA, 2011; pp. 23–72. [Google Scholar] [CrossRef]
- Croswell, W. Antenna theory, analysis, and design. IEEE Antennas Propag. Soc. Newsl. 1982, 24, 28–29. [Google Scholar] [CrossRef]
- Esposito, C.; Gifuni, A.; Perna, S. Measurement of the Antenna Phase Center Position in Anechoic Chamber. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2183–2187. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Zhu, S.; Zhou, X.; Liu, J.; Xie, B. Agricultural Application Prospect of Fully Polarimetric and Quantification S-Band SAR Subsystem in Chinese High-Resolution Aerial Remote Sensing System. Sensors 2024, 24, 236. [Google Scholar] [CrossRef]
- Eineder, M.; Holzner, J. Interferometric DEMs in alpine terrain-limits and options for ERS and SRTM. In Proceedings of the IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), Honolulu, HI, USA, 24–28 July 2000; Volume 3217, pp. 3210–3212. [Google Scholar]
- Schmitt, M.; Stilla, U. Utilization of airborne multi-aspect InSAR data for the generation of urban ortho-images. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 3937–3940. [Google Scholar]
- GB/T 13977-2012; Specifications for Aerophotogrammetric Field Work of 1:5000 1:10,000 Topographic Maps. Standards Press of China: Beijing, China, 2012.
- Gao, J.; Sun, Z.; Guo, H.; Wei, L.; Li, Y.; Xing, Q. Experimental Results of Three-Dimensional Modeling and Mapping with Airborne Ka-Band Fixed-Baseline InSAR in Typical Topographies of China. Remote Sens. 2022, 14, 1355. [Google Scholar] [CrossRef]
Applications | Characteristics | Mode | Design Requirements |
---|---|---|---|
Plain | Low-lying and undulating terrain | XTI flight altitude: 2000–4000 m | Spatial resolution: 0.1 m × 0.1 m/0.3 m × 0.3 m Elevation accuracy: 0.42 m |
Hill, mountain | Undulating terrain and complex weather | XTI flight altitude: 3000–4000 m | Spatial resolution: 0.1 m × 0.1 m/0.3 m × 0.3 m Elevation accuracy: 1 m |
Coastal and island | Wide coverage and rapid change | Large look angle (70°) and swath image mode flight altitude: 2000–6000 m | Spatial resolution: 0.3 m × 0.3 m Swath: 10,000 m |
Parameter | Value |
---|---|
Carrier frequency | 35 GHz |
Transmitted power | 17 w |
Bandwidth | 2800 MHz |
Pulse width | 5 μs |
Baseline length | 0.32 m |
× | 8 × 8 |
Resolution | 0.1 m × 0.1 m (Range × Azimuth) |
Baseline angle | 45° |
Pulse repeat frequency | 2000 Hz |
Look angle | 36°–54° |
Phase error | 1° |
Baseline length error | 0.0005 m |
Baseline angle error | 0.005° |
Slant range error | 0.1 m |
Parameter | Value |
---|---|
Position accuracy | 0.02 m |
Velocity accuracy | 0.005 m/s |
Roll and Pitch accuracy | 0.0025° |
True Heading accuracy | 0.005 |
Parameter | Bayan Nur | Chengde | Boao |
---|---|---|---|
Model | Cessna 208B | ||
Average velocity | 240 km/h–320 km/h | ||
Bandwidth | 2800 MHz/1200 MHz (0.1/0.3 m resolution) | ||
Baseline angle | 45° | 70° | |
Resolution | 0.1 m × 0.1 m, 0.3 m × 0.3 m | 0.3 m × 0.3 m | |
Look angle | 37°–53° | 62°–78° | |
Carrier altitude | 3000 m | 2800 m | 4000 m |
Swath width | 1.70 km | 1.70 km | 11.30 km |
Swath length | 20 km | 40 km | 77 km |
Name | Coordinates | Measured | DSM | Error |
---|---|---|---|---|
JF01 | 40°58′51.06″N 117°23′17.49″E | 491.13 | 491.46 | −0.33 |
JF02 | 40°58′48.60″N 117°22′34.53″E | 483.95 | 483.74 | 0.20 |
JF03 | 40°58′14.28″N 117°22′31.14″E | 464.52 | 464.75 | −0.23 |
JF04 | 40°58′00.31″N 117°23′24.18″E | 495.21 | 494.91 | 0.30 |
JF05 | 40°57′27.21″N 117°24′12.62″E | 496.65 | 496.26 | 0.38 |
JF06 | 40°57′26.03″N 117°22′29.96″E | 528.62 | 528.71 | −0.08 |
JF07 | 40°57′42.81″N 117°22′58.23″E | 505.87 | 506.36 | −0.49 |
JF08 | 40°57′48.16″N 117°23′06.45″E | 503.18 | 502.98 | 0.20 |
RSME | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, Y.; Chen, Q.; Zhou, X.; Zhu, S.; Chen, S. Airborne Short-Baseline Millimeter Wave InSAR System Analysis and Experimental Results. Remote Sens. 2024, 16, 1020. https://doi.org/10.3390/rs16061020
Wang L, Liu Y, Chen Q, Zhou X, Zhu S, Chen S. Airborne Short-Baseline Millimeter Wave InSAR System Analysis and Experimental Results. Remote Sensing. 2024; 16(6):1020. https://doi.org/10.3390/rs16061020
Chicago/Turabian StyleWang, Luhao, Yabo Liu, Qingxin Chen, Xiaojie Zhou, Shuang Zhu, and Shilong Chen. 2024. "Airborne Short-Baseline Millimeter Wave InSAR System Analysis and Experimental Results" Remote Sensing 16, no. 6: 1020. https://doi.org/10.3390/rs16061020
APA StyleWang, L., Liu, Y., Chen, Q., Zhou, X., Zhu, S., & Chen, S. (2024). Airborne Short-Baseline Millimeter Wave InSAR System Analysis and Experimental Results. Remote Sensing, 16(6), 1020. https://doi.org/10.3390/rs16061020