A Localized Particle Filtering Approach to Advance Flood Frequency Estimation at Large Scale Using Satellite Synthetic Aperture Radar Image Collection and Hydrodynamic Modelling
Abstract
:1. Introduction
2. Methods
2.1. Mapping Flood Inundation Extent from SAR Images
2.2. Generating an Archive of Design Flood Inundation Maps
2.3. Assessing Flood Return Period Using a Localized Particle Filter
3. Study Area and Experimental Set-Up
3.1. Study Area
3.2. SAR Data Set and Processing
3.3. Generating an Archive of Design Flood Extent Maps Using a Shallow Water Model
3.4. Subcatchments as Subareas in the Data Assimilation
4. Validation Approach
5. Results and Discussion
5.1. Localization
5.2. Assessment of Estimated Return Periods
6. Conclusions
- Confirms the significant value of SAR data for flood monitoring.
- Improves the accuracy of flood extent maps and enables real-time return period estimation.
- Provides spatially distributed return periods, accounting for the variations in flood processes along the river.
7. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gurnell, A.M.; Rinaldi, M.; Belletti, B.; Bizzi, S.; Blamauer, B.; Braca, G.; Buijse, A.D.; Bussettini, M.; Camenen, B.; Comiti, F.; et al. A Multi-Scale Hierarchical Framework for Developing Understanding of River Behaviour to Support River Management. Aquat. Sci. 2016, 78, 1–16. [Google Scholar] [CrossRef]
- Merz, B.; Aerts, J.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; et al. Floods and Climate: Emerging Perspectives for Flood Risk Assessment and Management. Nat. Hazards Earth Syst. Sci. 2014, 14, 1921–1942. [Google Scholar] [CrossRef]
- Zingaro, M. Advanced Analysis and Integration of Remote Sensing and in Situ Data for Flood Monitoring. ROL 2021, 54, 41–47. [Google Scholar] [CrossRef]
- Dottori, F.; Salamon, P.; Bianchi, A.; Alfieri, L.; Hirpa, F.A.; Feyen, L. Development and Evaluation of a Framework for Global Flood Hazard Mapping. Adv. Water Resour. 2016, 94, 87–102. [Google Scholar] [CrossRef]
- Du, J.; Kimball, J.S.; Sheffield, J.; Pan, M.; Fisher, C.K.; Beck, H.E.; Wood, E.F. Satellite Flood Inundation Assessment and Forecast Using SMAP and Landsat. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6707–6715. [Google Scholar] [CrossRef]
- Hostache, R.; Matgen, P.; Montanari, A.; Montanari, M.; Hoffmann, L.; Pfister, L. Propagation of Uncertainties in Coupled Hydro-Meteorological Forecasting Systems: A Stochastic Approach for the Assessment of the Total Predictive Uncertainty. Atmos. Res. 2011, 100, 263–274. [Google Scholar] [CrossRef]
- Hostache, R.; Matgen, P.; Wagner, W. Change Detection Approaches for Flood Extent Mapping: How to Select the Most Adequate Reference Image from Online Archives? Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 205–213. [Google Scholar] [CrossRef]
- Rahman, M.S.; Di, L. The State of the Art of Spaceborne Remote Sensing in Flood Management. Nat. Hazards 2017, 85, 1223–1248. [Google Scholar] [CrossRef]
- Schumann, G.; Bates, P.D.; Horritt, M.S.; Matgen, P.; Pappenberger, F. Progress in Integration of Remote Sensing–Derived Flood Extent and Stage Data and Hydraulic Models. Rev. Geophys. 2009, 47, 2008RG000274. [Google Scholar] [CrossRef]
- D’Addabbo, A.; Refice, A.; Capolongo, D.; Pasquariello, G.; Manfreda, S. Data Fusion Through Bayesian Methods for Flood Monitoring from Remotely Sensed Data. In Flood Monitoring through Remote Sensing; Refice, A., D’Addabbo, A., Capolongo, D., Eds.; Springer Remote Sensing/Photogrammetry; Springer International Publishing: Cham, Switzerland, 2018; pp. 181–208. ISBN 978-3-319-63958-1. [Google Scholar]
- Grimaldi, S.; Li, Y.; Pauwels, V.R.N.; Walker, J.P. Remote Sensing-Derived Water Extent and Level to Constrain Hydraulic Flood Forecasting Models: Opportunities and Challenges. Surv. Geophys. 2016, 37, 977–1034. [Google Scholar] [CrossRef]
- Pierdicca, N.; Pulvirenti, L.; Chini, M.; Boni, G.; Squicciarino, G.; Candela, L. Flood Mapping by SAR: Possible Approaches to Mitigate Errors Due to Ambiguous Radar Signatures. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; IEEE: Quebec City, QC, Canada, 2014; pp. 3850–3853. [Google Scholar]
- Pulvirenti, L.; Chini, M.; Pierdicca, N.; Boni, G. Use of SAR Data for Detecting Floodwater in Urban and Agricultural Areas: The Role of the Interferometric Coherence. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1532–1544. [Google Scholar] [CrossRef]
- Refice, A.; Capolongo, D.; Pasquariello, G.; DaAddabbo, A.; Bovenga, F.; Nutricato, R.; Lovergine, F.P.; Pietranera, L. SAR and InSAR for Flood Monitoring: Examples With COSMO-SkyMed Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2711–2722. [Google Scholar] [CrossRef]
- Refice, A.; Zingaro, M.; D’Addabbo, A.; Chini, M. Integrating C- and L-Band SAR Imagery for Detailed Flood Monitoring of Remote Vegetated Areas. Water 2020, 12, 2745. [Google Scholar] [CrossRef]
- Bayik, C.; Abdikan, S.; Ozbulak, G.; Alasag, T.; Aydemir, S.; Balik Sanli, F. Exploiting Multi-Temporal Sentinel-1 SAR Data for Flood Extend Mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-3/W4, 109–113. [Google Scholar] [CrossRef]
- Jo, M.-J.; Osmanoglu, B.; Zhang, B.; Wdowinski, S. Flood Extent Mapping Using Dual-Polarimetric Sentinel-1 Synthetic Aperture Radar Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–3, 711–713. [Google Scholar] [CrossRef]
- Martinis, S.; Plank, S.; Ćwik, K. The Use of Sentinel-1 Time-Series Data to Improve Flood Monitoring in Arid Areas. Remote Sens. 2018, 10, 583. [Google Scholar] [CrossRef]
- McCormack, T.; Campanyà, J.; Naughton, O. A Methodology for Mapping Annual Flood Extent Using Multi-Temporal Sentinel-1 Imagery. Remote Sens. Environ. 2022, 282, 113273. [Google Scholar] [CrossRef]
- Twele, A.; Cao, W.; Plank, S.; Martinis, S. Sentinel-1-Based Flood Mapping: A Fully Automated Processing Chain. Int. J. Remote Sens. 2016, 37, 2990–3004. [Google Scholar] [CrossRef]
- Alfieri, L.; Salamon, P.; Bianchi, A.; Neal, J.; Bates, P.; Feyen, L. Advances in Pan-European Flood Hazard Mapping. Hydrol. Process. 2014, 28, 4067–4077. [Google Scholar] [CrossRef]
- Giustarini, L.; Chini, M.; Hostache, R.; Pappenberger, F.; Matgen, P. Flood Hazard Mapping Combining Hydrodynamic Modeling and Multi Annual Remote Sensing Data. Remote Sens. 2015, 7, 14200–14226. [Google Scholar] [CrossRef]
- Grimaldi, S.; Petroselli, A.; Arcangeletti, E.; Nardi, F. Flood Mapping in Ungauged Basins Using Fully Continuous Hydrologic–Hydraulic Modeling. J. Hydrol. 2013, 487, 39–47. [Google Scholar] [CrossRef]
- Namara, W.G.; Damisse, T.A.; Tufa, F.G. Application of HEC-RAS and HEC-GeoRAS Model for Flood Inundation Mapping, the Case of Awash Bello Flood Plain, Upper Awash River Basin, Oromiya Regional State, Ethiopia. Model. Earth Syst. Environ. 2022, 8, 1449–1460. [Google Scholar] [CrossRef]
- Nandi, S.; Reddy, M.J. An Integrated Approach to Streamflow Estimation and Flood Inundation Mapping Using VIC, RAPID and LISFLOOD-FP. J. Hydrol. 2022, 610, 127842. [Google Scholar] [CrossRef]
- Pappenberger, F.; Dutra, E.; Wetterhall, F.; Cloke, H.L. Deriving Global Flood Hazard Maps of Fluvial Floods through a Physical Model Cascade. Hydrol. Earth Syst. Sci. 2012, 16, 4143–4156. [Google Scholar] [CrossRef]
- La Salandra, M.; Roseto, R.; Mele, D.; Dellino, P.; Capolongo, D. Probabilistic Hydro-Geomorphological Hazard Assessment Based on UAV-Derived High-Resolution Topographic Data: The Case of Basento River (Southern Italy). Sci. Total Environ. 2022, 842, 156736. [Google Scholar] [CrossRef] [PubMed]
- Matgen, P.; Giustarini, L.; Chini, M.; Hostache, R.; Wood, M.; Schlaffer, S. Creating a Water Depth Map from SAR Flood Extent and Topography Data. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 7635–7638. [Google Scholar]
- Di Mauro, C.; Hostache, R.; Matgen, P.; Pelich, R.; Chini, M.; van Leeuwen, P.J.; Nichols, N.; Blöschl, G. A Tempered Particle Filter to Enhance the Assimilation of SAR-Derived Flood Extent Maps Into Flood Forecasting Models. Water Resour. Res. 2022, 58, e2022WR031940. [Google Scholar] [CrossRef] [PubMed]
- Revilla-Romero, B.; Wanders, N.; Burek, P.; Salamon, P.; de Roo, A. Integrating Remotely Sensed Surface Water Extent into Continental Scale Hydrology. J. Hydrol. 2016, 543, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Schumann, G.J.-P.; Bates, P.D.; Neal, J.C.; Andreadis, K.M. Measuring and Mapping Flood Processes. In Hydro-Meteorological Hazards, Risks and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 35–64. ISBN 978-0-12-394846-5. [Google Scholar]
- Wood, M.; Hostache, R.; Neal, J.; Wagener, T.; Giustarini, L.; Chini, M.; Corato, G.; Matgen, P.; Bates, P. Calibration of Channel Depth and Friction Parameters in the LISFLOOD-FP Hydraulic Model Using Medium-Resolution SAR Data and Identifiability Techniques. Hydrol. Earth Syst. Sci. 2016, 20, 4983–4997. [Google Scholar] [CrossRef]
- Zingaro, M.; La Salandra, M.; Capolongo, D. New Perspectives of Earth Surface Remote Detection for Hydro-Geomorphological Monitoring of Rivers. Sustainability 2022, 14, 14093. [Google Scholar] [CrossRef]
- Dasgupta, A.; Hostache, R.; Ramsankaran, R.; Schumann, G.J.-P.; Grimaldi, S.; Pauwels, V.R.N.; Walker, J.P. A Mutual Information-Based Likelihood Function for Particle Filter Flood Extent Assimilation. Water Resour. Res. 2021, 57, e2020WR027859. [Google Scholar] [CrossRef]
- García-Pintado, J.; Neal, J.C.; Mason, D.C.; Dance, S.L.; Bates, P.D. Scheduling Satellite-Based SAR Acquisition for Sequential Assimilation of Water Level Observations into Flood Modelling. J. Hydrol. 2013, 495, 252–266. [Google Scholar] [CrossRef]
- Muñoz, D.F.; Abbaszadeh, P.; Moftakhari, H.; Moradkhani, H. Accounting for Uncertainties in Compound Flood Hazard Assessment: The Value of Data Assimilation. Coast. Eng. 2022, 171, 104057. [Google Scholar] [CrossRef]
- Di Mauro, C.; Hostache, R.; Matgen, P.; Pelich, R.; Chini, M.; van Leeuwen, P.J.; Nichols, N.K.; Blöschl, G. Assimilation of Probabilistic Flood Maps from SAR Data into a Coupled Hydrologic–Hydraulic Forecasting Model: A Proof of Concept. Hydrol. Earth Syst. Sci. 2021, 25, 4081–4097. [Google Scholar] [CrossRef]
- Bracken, L.J.; Wainwright, J.; Ali, G.A.; Tetzlaff, D.; Smith, M.W.; Reaney, S.M.; Roy, A.G. Concepts of Hydrological Connectivity: Research Approaches, Pathways and Future Agendas. Earth-Sci. Rev. 2013, 119, 17–34. [Google Scholar] [CrossRef]
- Krapesch, G.; Hauer, C.; Habersack, H. Scale Orientated Analysis of River Width Changes Due to Extreme Flood Hazards. Nat. Hazards Earth Syst. Sci. 2011, 11, 2137–2147. [Google Scholar] [CrossRef]
- Magilligan, F.J. Thresholds and the Spatial Variability of Flood Power during Extreme Floods. Geomorphology 1992, 5, 373–390. [Google Scholar] [CrossRef]
- Marcus, W.A.; Fonstad, M.A. Optical Remote Mapping of Rivers at Sub-meter Resolutions and Watershed Extents. Earth Surf. Process. Landf. 2008, 33, 4–24. [Google Scholar] [CrossRef]
- Zingaro, M.; Refice, A.; D’Addabbo, A.; Hostache, R.; Chini, M.; Capolongo, D. Experimental Application of Sediment Flow Connectivity Index (SCI) in Flood Monitoring. Water 2020, 12, 1857. [Google Scholar] [CrossRef]
- Buraas, E.M.; Renshaw, C.E.; Magilligan, F.J.; Dade, W.B. Impact of Reach Geometry on Stream Channel Sensitivity to Extreme Floods: Impact of Reach Geometry on Stream Channel Sensitivity to Floods. Earth Surf. Process. Landf. 2014, 39, 1778–1789. [Google Scholar] [CrossRef]
- Capolongo, D.; Refice, A.; Bocchiola, D.; D’Addabbo, A.; Vouvalidis, K.; Soncini, A.; Zingaro, M.; Bovenga, F.; Stamatopoulos, L. Coupling Multitemporal Remote Sensing with Geomorphology and Hydrological Modeling for Post Flood Recovery in the Strymonas Dammed River Basin (Greece). Sci. Total Environ. 2019, 651, 1958–1968. [Google Scholar] [CrossRef]
- de Musso, N.M.; Capolongo, D.; Caldara, M.; Surian, N.; Pennetta, L. Channel Changes and Controlling Factors over the Past 150 Years in the Basento River (Southern Italy). Water 2020, 12, 307. [Google Scholar] [CrossRef]
- Righini, M.; Surian, N. Remote Sensing as a Tool for Analysing Channel Dynamics and Geomorphic Effects of Floods. In Flood Monitoring through Remote Sensing; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 27–59. [Google Scholar]
- Rinaldi, M.; Amponsah, W.; Benvenuti, M.; Borga, M.; Comiti, F.; Lucía, A.; Marchi, L.; Nardi, L.; Righini, M.; Surian, N. An Integrated Approach for Investigating Geomorphic Response to Extreme Events: Methodological Framework and Application to the October 2011 Flood in the Magra River Catchment, Italy: Integrated Approach for Investigating Geomorphic Response to Floods. Earth Surf. Process. Landf. 2016, 41, 835–846. [Google Scholar] [CrossRef]
- Hostache, R.; Chini, M.; Giustarini, L.; Neal, J.; Kavetski, D.; Wood, M.; Corato, G.; Pelich, R.; Matgen, P. Near-Real-Time Assimilation of SAR-Derived Flood Maps for Improving Flood Forecasts. Water Resour. Res. 2018, 54, 5516–5535. [Google Scholar] [CrossRef]
- Chen, M.; Pang, J.; Wu, P. Flood Routing Model with Particle Filter-Based Data Assimilation for Flash Flood Forecasting in the Micro-Model of Lower Yellow River, China. Water 2018, 10, 1612. [Google Scholar] [CrossRef]
- Yan, H.; Moradkhani, H. Combined Assimilation of Streamflow and Satellite Soil Moisture with the Particle Filter and Geostatistical Modeling. Adv. Water Resour. 2016, 94, 364–378. [Google Scholar] [CrossRef]
- Giustarini, L.; Hostache, R.; Kavetski, D.; Chini, M.; Corato, G.; Schlaffer, S.; Matgen, P. Probabilistic Flood Mapping Using Synthetic Aperture Radar Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6958–6969. [Google Scholar] [CrossRef]
- Chini, M.; Hostache, R.; Giustarini, L.; Matgen, P. A Hierarchical Split-Based Approach for Parametric Thresholding of SAR Images: Flood Inundation as a Test Case. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6975–6988. [Google Scholar] [CrossRef]
- Zhao, J.; Pelich, R.; Hostache, R.; Matgen, P.; Cao, S.; Wagner, W.; Chini, M. Deriving Exclusion Maps from C-Band SAR Time-Series in Support of Floodwater Mapping. Remote Sens. Environ. 2021, 265, 112668. [Google Scholar] [CrossRef]
- Bates, P.D.; De Roo, A.P.J. A Simple Raster-Based Model for Flood Inundation Simulation. J. Hydrol. 2000, 236, 54–77. [Google Scholar] [CrossRef]
- Neal, J.; Schumann, G.; Bates, P. A Subgrid Channel Model for Simulating River Hydraulics and Floodplain Inundation over Large and Data Sparse Areas. Water Resour. Res. 2012, 48, 11. [Google Scholar] [CrossRef]
- Jenkinson, A.F. The Frequency Distribution of the Annual Maximum (or Minimum) Values of Meteorological Elements. Q. J. R. Meteorol. Soc. 1955, 81, 158–171. [Google Scholar] [CrossRef]
- Kotz, S.; Nadarajah, S. Extreme Value Distributions: Theory and Applications; Imperial College Press: London, UK; World Scientific Publishing Co.: Singapore, 2000; ISBN 978-1-86094-224-2. [Google Scholar]
- Cammeraat, L.H. A Review of Two Strongly Contrasting Geomorphological Systems within the Context of Scale. Earth Surf. Process. Landf. 2002, 27, 1201–1222. [Google Scholar] [CrossRef]
- Wainwright, J.; Parsons, A.J. The Effect of Temporal Variations in Rainfall on Scale Dependency in Runoff Coefficients. Water Resour. Res. 2002, 38, 12. [Google Scholar] [CrossRef]
- Magesh, N.; Chandrasekar, N.; Kaliraj, S. A GIS Based Automated Extraction Tool for the Analysis of Basin Morphometry. Bonfring Int. J. Ind. Eng. Manag. Sci. 2012, 2, 32–35. [Google Scholar]
- Shen, X.; Anagnostou, E.N.; Mei, Y.; Hong, Y. A Global Distributed Basin Morphometric Dataset. Sci. Data 2017, 4, 160124. [Google Scholar] [CrossRef]
- Zingaro, M.; La Salandra, M.; Colacicco, R.; Roseto, R.; Petio, P.; Capolongo, D. Suitability Assessment of Global, Continental and National Digital Elevation Models for Geomorphological Analyses in Italy. Trans. GIS 2021, 25, 2283–2308. [Google Scholar] [CrossRef]
- Jenson, S.K.; Domingue, O. Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis. Photogramm. Eng. 1988, 54, 1593–1600. [Google Scholar]
- Tarboton, D.G.; Bras, R.L.; Rodriguez-Iturbe, I. On the Extraction of Channel Networks from Digital Elevation Data. Hydrol. Process. 1991, 5, 81–100. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
SAR Acquisition | Date | Time | SAR ID |
---|---|---|---|
March 2007 | 5 March | 10:27 | 1 |
March 2007 | 5 March | 21:53 | 2 |
March 2007 | 8 March | 10:34 | 3 |
March 2007 | 8 March | 21:58 | 4 |
July 2007 | 23 July | 10:27 | 5 |
July 2007 | 23 July | 21:53 | 6 |
January 2008 | 17 January | 21:55 | 7 |
January 2008 | 24 January | 10:12 | 8 |
January 2008 | 24 January | 21:38 | 9 |
January 2010 | 18 January | 10:30 | 10 |
January 2010 | 18 January | 21:53 | 11 |
Confusion | Matrix | Indices | ||||
---|---|---|---|---|---|---|
Experiment | OF | ON | Accuracy | CSI | Kappa | |
Assimilation 1 spatial unit | AF | 7153 | 1796 | 0.912 | 0.681 | 0.752 |
AN | 1562 | 27,402 | ||||
Assimilation 3 spatial units | AF | 7572 | 1863 | 0.921 | 0.716 | 0.782 |
AN | 1143 | 27,335 | ||||
Assimilation 9 spatial units | AF | 7408 | 1373 | 0.929 | 0.734 | 0.801 |
AN | 1307 | 27,825 | ||||
Assimilation 26 spatial units | AF | 6983 | 1416 | 0.917 | 0.689 | 0.763 |
AN | 1732 | 27,782 | ||||
SAR image | SOF | 5845 | 804 | 0.903 | 0.614 | 0.702 |
SON | 2870 | 28,394 |
SAR ID | SAR Observation (Date, Time) | Tg | ||||
---|---|---|---|---|---|---|
No Loc | Loc on 3 | Loc on 9 | Loc on 26 | |||
1 | 5 March 2007 10:27 | 6.35 | 1.01 | 2.00 | 2.00 | 1.01–20.00 |
3 | 8 March 2007 10:34 | 1.00–4.35 | 1.01 | 2.00 | 2.00 | 1.01–10.00 |
5 | 23 March 2007 10:27 | 4.02–308.55 | 5.00 | 20.00 | 20.00 | 1.01–500.00 |
7 | 17 January 2008 21:58 | 2.54–5.10 | 1.01 | 2.00 | 2.00 | 1.01–5.00 |
8 | 24 January 2008 10:12 | 1.00–1.13 | 1.01 | 1.01 | 1.01 | 1.01–2.00 |
10 | 18 January 2010 10:10 | 1.10–3.19 | 1.01 | 2.00 | 2.00 | 1.01–30.00 |
1 | 5 March 2007 10:27 | 1.00–1.02 | 1.01 | 1.01 | 1.01 | 1.01 |
3 | 8 March 2007 10:34 | 1.01–1.02 | 1.01 | 1.01–5.00 | 1.01–5.00 | 1.01–5.00 |
5 | 23 July 2007 10:27 | 1.52 | 5.00 | 5.00 | 1.01–10.00 | 1.01–10.00 |
7 | 17 January 2008 21:58 | 1.10 | 1.01 | 1.01–2.00 | 1.01–2.00 | 1.01–2.00 |
8 | 24 January 2008 10:12 | 1.14–2.42 | 1.01 | 1.01 | 1.01 | 1.01 |
10 | 18 January 2010 10:10 | 1.06 | 1.01 | 1.01 | 1.01 | 1.01–5.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zingaro, M.; Hostache, R.; Chini, M.; Capolongo, D.; Matgen, P. A Localized Particle Filtering Approach to Advance Flood Frequency Estimation at Large Scale Using Satellite Synthetic Aperture Radar Image Collection and Hydrodynamic Modelling. Remote Sens. 2024, 16, 2179. https://doi.org/10.3390/rs16122179
Zingaro M, Hostache R, Chini M, Capolongo D, Matgen P. A Localized Particle Filtering Approach to Advance Flood Frequency Estimation at Large Scale Using Satellite Synthetic Aperture Radar Image Collection and Hydrodynamic Modelling. Remote Sensing. 2024; 16(12):2179. https://doi.org/10.3390/rs16122179
Chicago/Turabian StyleZingaro, Marina, Renaud Hostache, Marco Chini, Domenico Capolongo, and Patrick Matgen. 2024. "A Localized Particle Filtering Approach to Advance Flood Frequency Estimation at Large Scale Using Satellite Synthetic Aperture Radar Image Collection and Hydrodynamic Modelling" Remote Sensing 16, no. 12: 2179. https://doi.org/10.3390/rs16122179
APA StyleZingaro, M., Hostache, R., Chini, M., Capolongo, D., & Matgen, P. (2024). A Localized Particle Filtering Approach to Advance Flood Frequency Estimation at Large Scale Using Satellite Synthetic Aperture Radar Image Collection and Hydrodynamic Modelling. Remote Sensing, 16(12), 2179. https://doi.org/10.3390/rs16122179