Analysis of Cassini Altimetric Crossovers on Titan
Abstract
:1. Introduction
2. Titan Shape
Eccentricity Tides
3. Radar Altimetry
Altimetry Datasets
- -
- Maximum likelihood estimator (MLE). This dataset was developed based on a statistical model [29,30], particularly the Brown model initially utilized to measure sea roughness. MLE optimally estimates parameters by maximizing the likelihood function, showcasing its asymptotically unbiased and efficient characteristics;
- -
- Threshold. This dataset was acquired through a tracking algorithm employed as a thresholding mechanism [31]. This method is particularly sensitive to the higher portions of the surface, capturing portions of the echoes above a specified threshold. It serves as an effective means of tracking prominent features on Titan’s surface;
- -
- First moment. This dataset was generated by computing the first moment from the returned waveform. This involves estimating the centroid of the power distribution, providing a mean value for the surface. This method, rooted in centroid estimation of the pulse width, contributes valuable insights into surface characteristics.
4. Crossover Identification
- -
- T28 and T29 (outbound);
- -
- T29 and T30 (outbound);
- -
- T08 and T19;
- -
- T77 and T113.
5. Trajectory Reconstruction of Cassini
Correction to Crossover Points
6. Crossover Error Budget
- -
- Errors in the reconstruction of Cassini’s ephemerides with respect to Titan (radial direction);
- -
- Instrumental errors of the altimeter (e.g., pointing angle);
- -
- Errors in the processing of the collected waveforms;
- -
- Physical displacement of Titan’s surface due to tides.
7. Results
7.1. Looking for Solid Tides
7.2. Influence of Observation Geometry
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elachi, C.; Wall, S.; Allison, M.; Anderson, Y.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Franceschetti, G.; Gim, Y.; et al. Cassini radar views the surface of Titan. Science 2005, 308, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.M.C.; Malaska, M.J.; Schoenfeld, A.M.; Solomonidou, A.; Birch, S.P.D.; Florence, M.; Hayes, A.G.; Williams, D.A.; Radebaugh, J.; Verlander, T.; et al. A global geomorphologic map of Saturn’s moon Titan. Nat. Astron. 2020, 4, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, R.D.; Wall, S.; Radebaugh, J.; Boubin, G.; Reffet, E.; Janssen, M.; Stofan, E.; Lopes, R.; Kirk, R.; Elachi, C.; et al. The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 2006, 312, 724–727. [Google Scholar] [CrossRef] [PubMed]
- Radebaugh, J. Dunes on Saturn’s moon Titan as revealed by the Cassini Mission. Aeolian Res. 2013, 11, 23–41. [Google Scholar] [CrossRef]
- Callegari, M.; Casarano, D.; Mastrogiuseppe, M.; Poggiali, V.; Notarnicola, C. Dune Height Estimation on Titan Exploiting Pairs of Synthetic Aperture Radar Images with Different Observation Angles. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1295–1306. [Google Scholar] [CrossRef]
- Lalich, D.E.; Hayes, V.P.A.G.; Mastrogiuseppe, M.; Malaska, M.J.; Schurmeier, L.R. Diverse evolution of mountains and hummocks on Titan as observed by the Cassini RADAR altimeter. Icarus 2022, 374, 114775. [Google Scholar] [CrossRef]
- Hayes, A.G. The lakes and seas of Titan. Annu. Rev. Earth Planet. Sci. 2016, 44, 57–83. [Google Scholar] [CrossRef]
- Hayes, A.G.; Birch, S.P.D.; Dietrich, W.E.; Howard, A.D.; Kirk, R.L.; Poggiali, V.; Mastrogiuseppe, M.; Michaelides, R.J.; Corlies, P.M.; Moore, J.M.; et al. Topographic constraints on the evolution and connectivity of Titan’s lacustrine basins. Geophys. Res. Lett. 2017, 44, 11745–11753. [Google Scholar] [CrossRef]
- Michaelides, R.J.; Hayes, A.G.; Mastrogiuseppe, M.; Zebker, H.A.; Farr, T.G.; Malaska, M.J.; Poggiali, V.; Mullen, J. Constraining the physical properties of Titan’s empty lake basins using nadir and off-nadir Cassini RADAR backscatter. Icarus 2016, 270, 57–66. [Google Scholar] [CrossRef]
- Mitri, G.; Barnes, J.; Coustenis, A.; Flamini, E.; Hayes, A.; Lorenz, R.D.; Mastrogiuseppe, M.; Orosei, R.; Postberg, F.; Reh, K.; et al. Exploration of Enceladus and Titan: Investigating ocean worlds’ evolution and habitability in the Saturn system. Exp. Astron. 2021, 54, 877–910. [Google Scholar] [CrossRef]
- Mastrogiuseppe, M.; Poggiali, V.; Hayes, A.G.; Lorenz, R.; Lunine, J.I.; Picardi, G.; Seu, R.; Flamini, E.; Mitri, G.; Notarnicola, C.; et al. The bathymetry of a Titan sea. Geophys. Res. Lett. 2014, 41, 1432–1437. [Google Scholar] [CrossRef]
- Hayes, A.G.; Lorenz, R.D.; Lunine, J.I. A post-Cassini view of Titan’s methane-based hydrologic cycle. Nat. Geosci. 2018, 11, 306–313. [Google Scholar] [CrossRef]
- Poggiali, V.; Mastrogiuseppe, M.; Hayes, A.G.; Seu, R.; Birch, S.P.D.; Lorenz, R.; Grima, C.; Hofgartner, J.D. Liquid-filled canyons on Titan. Geophys. Res. Lett. 2016, 43, 7887–7894. [Google Scholar] [CrossRef]
- Birch, S.P.D.; Hayes, A.G.; Dietrich, W.E.; Howard, A.D.; Bristow, C.S.; Malaska, M.J.; Moore, J.; Mastrogiuseppe, M.; Hofgartner, J.; Williams, D.; et al. Geomorphologic mapping of titan’s polar terrains: Constraining surface processes and landscape evolution. Icarus 2017, 282, 214–236. [Google Scholar] [CrossRef]
- Mastrogiuseppe, M.; Hayes, A.G.; Poggiali, V.; Seu, R.; Lunine, J.I.; Hofgartner, J.D. Radar Sounding Using the Cassini Altimeter: Waveform Modeling and Monte Carlo Approach for Data Inversion of Observations of Titan’s Seas. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5646–5656. [Google Scholar] [CrossRef]
- Mastrogiuseppe, M.; Hayes, A.G.; Poggiali, V.; Lunine, J.I.; Lorenz, R.D.; Seu, R.; Le Gall, A.; Notarnicola, C.; Mitchell, K.; Malaska, M.; et al. Bathymetry and composition of Titan’s Ontario Lacus derived from Monte Carlo-based waveform inversion of Cassini RADAR altimetry data. Icarus 2018, 300, 203–209. [Google Scholar] [CrossRef]
- Mastrogiuseppe, M.; Poggiali, V.; Hayes, A.G.; Lunine, J.I.; Seu, R.; Di Achille, G.; Lorenz, R. Cassini radar observation of Punga Mare and environs: Bathymetry and composition. Earth Planet. Sci. Lett. 2018, 496, 89–95. [Google Scholar] [CrossRef]
- Mastrogiuseppe, M.; Poggiali, V.; Hayes, A.G.; Lunine, J.I.; Seu, R.; Mitri, G.; Lorenz, R.D. Deep and methane-rich lakes on Titan. Nat. Astron. 2019, 3, 535–542. [Google Scholar] [CrossRef]
- Poggiali, V.; Hayes, A.G.; Mastrogiuseppe, M.; Le Gall, A.; Lalich, D.; Gomez-Leal, I.; Lunine, J.I. The Bathymetry of Moray Sinus at Titan’s Kraken Mare. J. Geophys. Res. Planets 2020, 125, e2020JE006558. [Google Scholar] [CrossRef]
- Le Gall, A.; Malaska, M.J.; Lorenz, R.D.; Janssen, M.A.; Tokano, T.; Hayes, A.G.; Mastrogiuseppe, M.; Lunine, J.I.; Veyssière, G.; Encrenaz, P.; et al. Composition, seasonal change, and bathymetry of Ligeia Mare, Titan, derived from its microwave thermal emission. J. Geophys. Res. Planets 2016, 121, 233–251. [Google Scholar] [CrossRef]
- Iess, L.; Jacobson, R.A.; Ducci, M.; Stevenson, D.J.; Lunine, J.I.; Armstrong, J.W.; Asmar, S.W.; Racioppa, P.; Rappaport, N.J.; Tortora, P. The Tides of Titan. Science 2012, 337, 457–459. [Google Scholar] [CrossRef] [PubMed]
- Durante, D.; Hemingway, D.J.; Racioppa, P.; Iess, L.; Stevenson, D.J. Titan’s gravity field and interior structure after Cassini. Icarus 2019, 326, 123–132. [Google Scholar] [CrossRef]
- Zebker, H.A.; Stiles, B.; Hensley, S.; Lorenz, R.; Kirk, R.L.; Lunine, J. Size and shape of Saturn’s moon Titan. Science 2009, 324, 921–923. [Google Scholar] [CrossRef] [PubMed]
- Corlies, P.; Hayes, A.G.; Birch, S.P.D.; Lorenz, R.; Stiles, B.W.; Kirk, R.; Poggiali, V.; Zebker, H.; Iess, L. Titan’s Topography and Shape at the End of the Cassini Mission. Geophys. Res. Lett. 2017, 44, 11754–11761. [Google Scholar] [CrossRef]
- Vincent, D.; Karatekin, Ö.; Vallaeys, V.; Hayes, A.G.; Mastrogiuseppe, M.; Notarnicola, C.; Dehant, V.; Deleersnijder, E. Numerical study of tides in Ontario Lacus, a hydrocarbon lake on the surface of the Saturnian moon Titan. Ocean Dyn. 2016, 66, 461–482. [Google Scholar] [CrossRef]
- Mastrogiuseppe, M. Dual Frequency Orbiter-Radar System for the Observation of Seas and Tides on Titan: Extraterrestrial Oceanography from Satellite. Remote Sens. 2019, 11, 1898. [Google Scholar] [CrossRef]
- Elachi, C.; Allison, M.D.; Borgarelli, L.; Encrenaz, P.; Im, E.; Janssen, M.A.; Johnson, W.T.K.; Kirk, R.L.; Lorenz, R.D.; Lunine, J.I.; et al. Radar: The Cassini Titan Radar Mapper. In The Cassini-Huygens Mission; Russell, C.T., Ed.; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar] [CrossRef]
- West, R.D.; Anderson, Y.; Boehmer, R.; Borgarelli, L.; Callahan, P.; Elachi, C.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.A.; et al. Cassini RADAR sequence planning and instrument performance. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1777–1795. [Google Scholar] [CrossRef]
- Montefredini, E.; Morelli, F.; Picardi, G.; Seu, R. A non-coherent surface backscattering model for radar observation of planetary bodies and its application to Cassini Radar Altimeter. Planet. Space Sci. 1995, 43, 1567–1577. [Google Scholar] [CrossRef]
- Alberti, G.; Festa, L.; Papa, C.; Vingione, G. A Waveform Model for Near-Nadir Radar Altimetry Applied to the Cassini Mission to Titan. IEEE Trans. Geosci. Remote Sens. 2009, 47, 7. [Google Scholar] [CrossRef]
- Bucciarelli, T.; Cacopardi, S.; Picardi, G.; Seu, R.; Levrini, G.; Perfetti, R. Tracking Algorithms in Radar Altimetry. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS’88), Edinburgh, UK, 13–16 September 1988; Volume 2, pp. 973–976. [Google Scholar]
- Poggiali, V.; Mastrogiuseppe, M.; Hayes, A.G.; Seu, R.; Mullen, J.P.; Birch, S.P.D.; Raguso, M.C. High resolution topography of Titan adapting the Delay-Doppler algorithm to the Cassini RADAR Altimeter Data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7262–7268. [Google Scholar] [CrossRef]
- Mastrogiuseppe, M.; Poggiali, V.; Seu, R.; Martufi, R.; Notarnicola, C. Titan dune heights retrieval by using Cassini Radar Altimeter. Icarus 2014, 230, 191–197. [Google Scholar] [CrossRef]
- Evans, S.; Taber, W.; Drain, T.; Smith, J.; Wu, H.; Guevara, M.; Sunseri, R.; Evans, J. MONTE: The next generation of mission design and navigation software. In Proceedings of the 6th International Conference on Astrodynamics Tools and Techniques, Darmstadt, Germany, 14–17 March 2016. [Google Scholar]
- Bellerose, J.; Roth, D.; Wagner, S. The Cassini Mission: Reconstructing Thirteen Years of the Most Complex Gravity-Assist Trajectory Flown to Date. In Proceedings of the 2018 SpaceOps Conference, Marseille, France, 28 May–1 June 2018. [Google Scholar] [CrossRef]
- Di Ruscio, A.; Fienga, A.; Durante, D.; Iess, L.; Laskar, J.; Gastineau, M. Analysis of Cassini radio tracking data for the construction of INPOP19a: A new estimate of the Kuiper belt mass. Astron. Astrophys. 2020, 640, A7. [Google Scholar] [CrossRef]
- Iess, L.; Militzer, B.; Kaspi, Y.; Nicholson, P.; Durante, D.; Racioppa, P.; Anabtawi, A.; Galanti, E.; Hubbard, W.; Mariani, M.J.; et al. Measurement and implications of Saturn’s gravity field and ring mass. Science 2019, 364, aat2965. [Google Scholar] [CrossRef] [PubMed]
- Markham, S.; Durante, D.; Iess, L.; Stevenson, D.J. Possible evidence of p-modes in Cassini measurements of Saturn’s gravity field. Planet. Sci. J. 2020, 1, 27. [Google Scholar] [CrossRef]
- Boone, D.; Bellerose, J.; Roth, D. Resolution of Orbit Determination prediction instabilities at Titan during Cassini’s Solstice mission. In Proceedings of the 26th International Symposium on Space Flight Dynamics, Matsuyama, Japan, 3–9 June 2017; p. ISSFD-2017-109. [Google Scholar]
Flyby | Date (UTC) | Minimum Altitude | Mean Anomaly, M |
---|---|---|---|
Ta | 26 October 2004 15:31:27 | 1174 km | −59° |
T08 | 28 October 2005 04:15:24 | 1353 km | −66° |
T13 | 30 April 2006 20:58:14 | 1856 km | 145° |
T19 | 9 October 2006 17:30:07 | 980 km | −163° |
T28 | 10 April 2007 22:58:00 | 991 km | 14° |
T29 | 26 April 2007 21:32:58 | 981 km | 14° |
T30 | 12 May 2007 20:09:58 | 959 km | 14° |
T41 | 22 February 2008 17:32:07 | 1000 km | −12° |
T43 | 12 May 2008 10:01:58 | 1001 km | −13° |
T55 | 21 May 2009 21:26:30 | 965 km | 161° |
T56 | 6 June 2009 19:59:36 | 965 km | 161° |
T61 | 25 August 2009 12:51:37 | 970 km | 160° |
T64 | 27 December 2009 00:16:59 | 955 km | 90° |
T84 | 6 June 2012 00:07:21 | 959 km | 67° |
# | Flyby Pair | Lat. and Long. | Spacecraft Altitude | Incidence Angle | ΔM | ΔTidal Signal for h2 = 2.5 |
---|---|---|---|---|---|---|
A | T29 + T43 | 34.8°N, 144.1°W | 14,643 km | 0.43° | 1° | 0 m |
6955 km | 0.31° | |||||
B | T30 + T43 | 34.9°N, 145.7°W | 7930 km | 0.03° | 1° | 0 m |
6448 km | 0.23° | |||||
C | T41 + T64 | 9.4°N, 154.3°W | 5853 km | 0.05° | 78° | 15 m |
8197 km | 0.21° | |||||
D | Ta + T84 | 24.7°N, 3.4°E | 7654 km | 0.89° | 12° | 2 m |
5878 km | 0.12° | |||||
E | T28 + T29 | 12–20°S, 27–29°E | 7626 km | 0.46° | 0° | 0 m |
13,315 km | 0.88° | |||||
F | T29 + T30 | 5–12°S, 26–28°E | 7408 km | 0.39° | 0° | 0 m |
12,843 km | 0.62° | |||||
G | T19 + T55 | 38–39°N, 138–139°E | 8592 km | 0.33° | 2° | 0 m |
7063 km | 0.46° | |||||
H | T19 + T56 | 32.8°N, 140.8°E | 14,873 km | 0.28° | 2° | 0 m |
8043 km | 0.12° | |||||
I | T08 + T13 | 0°N, 172–180°E | 6253 km | 0.15° | 79° | 27 m |
10,580 km | 0.03° | |||||
J | T08 + T61 | 0°N, 172.7°E | 8958 km | 0.15° | 94° | 29 m |
5126 km | 0.48° | |||||
K | T13 + T61 | 0.3°N, 171.7°E | 7106 km | 0.03° | 15° | 3 m |
5416 km | 0.52° |
# | Flyby Pair | Orbital Correction | Orbital Uncertainty | Altimetry Scatter | RSS |
---|---|---|---|---|---|
A | T29 + T43 | 39.6 m | 39.4 m | 26.4 m | 60.1 m |
−24.5 m | 25.8 m | 26.3 m | |||
B | T30 + T43 | 53.1 m | 25.7 m | 22.6 m | 50.1 m |
−24.5 m | 25.5 m | 26.3 m | |||
C | T41 + T64 | 5.3 m | 13.1 m | 15.5 m | 26.2 m |
11.9 m | 4.9 m | 15.9 m | |||
D | Ta + T84 | – | 40.0 m * | 9.4 m | 61.1 m |
– | 40.0 m * | 21.2 m | |||
E | T28 + T29 | 30.2 m | 12.3 m | 17.5 m | 41.6 m |
0.5 m | 20.3 m | 29.3 m | |||
F | T29 + T30 | 7.3 m | 16.4 m | 29.3 m | 42.5 m |
−7.9 m | 13.0 m | 22.6 m | |||
G | T19 + T55 | 45.7 m | 11.2 m | 19.0 m | 29.9 m |
14.5 m | 13.6 m | 15.0 m | |||
H | T19 + T56 | 48.8 m | 10.9 m | 19.0 m | 36.8 m |
63.8 m | 12.0 m | 27.0 m | |||
I | T08 + T13 | 64.6 m | 13.7 m | 10.4 m | 24.2 m |
−11.4 m | 5.7 m | 16.0 m | |||
J | T08 + T61 | 64.2 m | 12.5 m | 10.4 m | 22.3 m |
21.6 m | 5.6 m | 14.2 m | |||
K | T13 + T61 | −9.6 m | 4.7 m | 16.0 m | 22.6 m |
21.1 m | 5.4 m | 14.2 m |
MLE | Threshold | Corrected Threshold | First Moment | Corrected First Moment | ||
---|---|---|---|---|---|---|
RMS | All crossovers | 71.3 m | 71.6 m | 58.6 m | 118.4 m | 60.2 m |
(after fit) | (70.3 m) | (71.5 m) | (58.6 m) | (116.2 m) | (59.8 m) | |
Crossovers w/o tide | 80.1 m | 78.2 m | 66.4 m | 131.2m | 68.5 m | |
Crossovers w/ tide | 59.0 m | 62.9 m | 47.5 m | 100.9 m | 48.4 m | |
(after fit) | (56.4 m) | (62.6 m) | (47.5 m) | (95.3 m) | (47.2 m) | |
WRMS | All crossovers | 1.20 | 1.75 | 1.39 | 2.57 | 1.27 |
(after fit) | (1.16) | (1.75) | (1.39) | (2.45) | (1.26) | |
Crossovers w/o tide | 1.14 | 1.63 | 1.38 | 2.31 | 1.19 | |
Crossovers w/ tide | 1.27 | 1.89 | 1.39 | 2.85 | 1.37 | |
(after fit) | (1.17) | (1.87) | (1.39) | (2.61) | (1.34) | |
Love number h2 | 2.5 ± 2.8 | 0.7 ± 2.6 | 0.2 ± 1.9 | 4.1 ± 4.2 | 1.1 ± 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durante, D.; Mastrogiuseppe, M.; Carli, E.; Poggiali, V.; Di Ruscio, A.; Notaro, V.; Iess, L. Analysis of Cassini Altimetric Crossovers on Titan. Remote Sens. 2024, 16, 2209. https://doi.org/10.3390/rs16122209
Durante D, Mastrogiuseppe M, Carli E, Poggiali V, Di Ruscio A, Notaro V, Iess L. Analysis of Cassini Altimetric Crossovers on Titan. Remote Sensing. 2024; 16(12):2209. https://doi.org/10.3390/rs16122209
Chicago/Turabian StyleDurante, Daniele, Marco Mastrogiuseppe, Elisa Carli, Valerio Poggiali, Andrea Di Ruscio, Virginia Notaro, and Luciano Iess. 2024. "Analysis of Cassini Altimetric Crossovers on Titan" Remote Sensing 16, no. 12: 2209. https://doi.org/10.3390/rs16122209
APA StyleDurante, D., Mastrogiuseppe, M., Carli, E., Poggiali, V., Di Ruscio, A., Notaro, V., & Iess, L. (2024). Analysis of Cassini Altimetric Crossovers on Titan. Remote Sensing, 16(12), 2209. https://doi.org/10.3390/rs16122209