A New and Robust Index for Water Body Extraction from Sentinel-2 Imagery
Abstract
:1. Introduction
2. Study Areas and Data Sources
2.1. Test Site Selection
2.1.1. Urban Built-Up Area
2.1.2. Vegetation and Clouds
2.1.3. Eutrophication and Urban Built-Up Shadows
2.1.4. Alpine Terrain with Bare Ground and Glaciers
2.1.5. Mixed Pixels
2.2. Image Data
2.3. Image Preprocessing
3. Methodology
3.1. Spectral Separability of Land Cover Features
3.2. Construction of the New Water Index
3.3. Analysis Methods
3.3.1. ISODATA Algorithm
3.3.2. Accuracy Assessment Method
Kappa Coefficient
Overall Accuracy
Producers’ Accuracy and Omission Error
Users’ Accuracy and Commission Error
3.3.3. Sub-Pixel Accuracy Assessment
4. Results
4.1. Urban Built-Ups’ Interference-Eliminating Test
4.2. Vegetation and Cloud Interference-Eliminating Test
4.3. Eutrophication and Urban Built-Up Shadow Interference-Eliminating Test
4.4. Alpine Terrain and Glacier Interference-Eliminating Test
4.5. Mixed Pixel Test
5. Discussion
5.1. Mis-Extraction of Building Interference
5.2. Mis-Extraction of Shadow Interference
5.3. Mixed Pixels’ Misidentification
5.4. Limitation of the SMBWI
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Supplementary Experiment on Extracting Small Water Bodies
SMBWI | MBWI | AWEInsh | SWI | NDWI | AWEIsh | RWI | MNDWI | RNDWI | |
---|---|---|---|---|---|---|---|---|---|
Area (km2) | 0.3841 | 0.3323 | 0.3288 | 0.4350 | 0.4504 | 0.4552 | 0.5831 | 0.6355 | 0.7172 |
EA (%) | 2.07% | 11.69% | 12.62% | 15.60% | 19.69% | 20.97% | 54.96% | 68.88% | 90.59% |
Appendix A.2. Supplementary Experiment of Alpine Terrain and Glacier Interference Elimination
Test Site | Water Index | OA (%) | Kappa | PA (%) | UA (%) | OE (%) | CE (%) | TE (%) |
---|---|---|---|---|---|---|---|---|
5 (Taiyang Lake) | SMBWI | 98.26 | 0.96 | 96.00 | 97.96 | 4.00 | 2.04 | 6.04 |
AWEInsh | 93.71 | 0.85 | 89.00 | 89.00 | 11.00 | 11.00 | 22.00 | |
MBWI | 89.71 | 0.76 | 87.00 | 79.09 | 13.00 | 20.91 | 33.91 | |
AWEIsh | 90.29 | 0.75 | 77.00 | 87.50 | 23.00 | 12.50 | 35.50 | |
NDWI | 88.86 | 0.74 | 89.00 | 76.07 | 11.00 | 23.93 | 34.93 | |
MNDWI | 89.71 | 0.73 | 70.00 | 92.11 | 30.00 | 7.89 | 37.89 | |
RWI | 84.86 | 0.65 | 86.00 | 68.80 | 14.00 | 31.20 | 45.20 | |
RNDWI | 82.57 | 0.59 | 75.00 | 67.57 | 25.00 | 32.43 | 57.43 | |
SWI | 80.29 | 0.54 | 75.00 | 63.03 | 25.00 | 36.97 | 61.97 |
References
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef]
- Jiang, W.; Ni, Y.; Pang, Z.; Li, X.; Ju, H.; He, G.; Lv, J.; Yang, K.; Fu, J.; Qin, X. An effective water body extraction method with new water index for sentinel-2 imagery. Water 2021, 13, 1647. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Zhou, M.; Zhang, S.; Zhan, W.; Sun, C.; Duan, Y. Landsat 8 OLI image based terrestrial water extraction from heterogeneous backgrounds using a reflectance homogenization approach. Remote Sens. Environ. 2015, 171, 14–32. [Google Scholar] [CrossRef]
- Papa, F.; Prigent, C.; Rossow, W.B. Monitoring flood and discharge variations in the large Siberian rivers from a multi-satellite technique. Surv. Geophys. 2008, 29, 297–317. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Sharma, K.P.; Fekete, B.M.; Copeland, A.H.; Holden, J.; Marble, J.; Lough, J.A. The storage and aging of continental runoff in large reservoir systems of the world. Ambio 1997, 26, 210–219. [Google Scholar]
- Pan, F.; Xi, X.; Wang, C. A comparative study of water indices and image classification algorithms for mapping inland surface water bodies using Landsat imagery. Remote Sens. 2020, 12, 1611. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Li, Y. Phoumilay. The construction and verification of a water index in the complex environment based on GF-2 images. Remote Sens. Nat. Resour. 2022, 34, 50–58. [Google Scholar]
- Feyisa, G.L.; Henrik, M.; Rasmus, F.; Simon, R.P. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Zhang, C.; Lv, A.; Zhu, W.; Yao, G.; Qi, S. Using multisource satellite data to investigate lake area, water level, and water storage changes of terminal lakes in ungauged regions. Remote Sens. 2021, 13, 3221. [Google Scholar] [CrossRef]
- Onačillová, K.; Gallay, M.; Paluba, D.; Péliová, A.; Tokarčík, O.; Laubertová, D. Combining Landsat 8 and Sentinel-2 Data in Google Earth Engine to Derive Higher Resolution Land Surface Temperature Maps in Urban Environment. Remote Sens. 2022, 14, 4076. [Google Scholar] [CrossRef]
- Fisher, A.; Danaher, T. A water index for SPOT5 HRG satellite imagery, New South Wales, Australia, determined by linear discriminant analysis. Remote Sens. 2013, 5, 5907–5925. [Google Scholar] [CrossRef]
- Xie, C.; Huang, X.; Zeng, W.; Fang, X. A novel water index for urban high-resolution eight-band WorldView-2 imagery. Int. J. Digit. Earth 2016, 9, 925–941. [Google Scholar] [CrossRef]
- Sharma, R.C.; Tateishi, R.; Hara, K.; Luong, V.N. Developing superfine water index (SWI) for global water cover mapping using MODIS data. Remote Sens. 2015, 7, 13807–13841. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Proud, S.R.; Fensholt, R.; Rasmussen, L.V.; Sandholt, I. Rapid response flood detection using the MSG geostationary satellite. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 536–544. [Google Scholar] [CrossRef]
- Rad, A.M.; Kreitler, J.; Sadegh, M. Augmented Normalized Difference Water Index for improved surface water monitoring. Environ. Model. Softw. 2021, 140, 105030. [Google Scholar] [CrossRef]
- Rees, W.G. Physical Principles of Remote Sensing, 3rd ed.; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Hollstein, A.; Segl, K.; Guanter, L.; Brell, M.; Enesco, M. Ready-to-use methods for the detection of clouds, cirrus, snow, shadow, water and clear sky pixels in Sentinel-2 MSI images. Remote Sens. 2016, 8, 666. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Wu, Q.S.; Wang, M.X.; Shen, Q.; Yao, Y.; Li, J.S.; Zhang, F.F.; Zhou, Y.M. Small water body extraction method based on Sentinel-2 satellite multi-spectral remote sensing image. Natl. Remote Sens. Bull. 2022, 26, 781–794. [Google Scholar] [CrossRef]
- Cao, R.; Li, C.; Liu, L.; Wang, J.; Yan, G. Extracting Miyun reservoir’s water area and monitoring its change based on a revised normalized different water index. Sci. Surv. Mapp. 2008, 33, 158–160. [Google Scholar]
- Wang, X.; Xie, S.; Zhang, X.; Chen, C.; Guo, H.; Du, J.; Duan, Z. A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 73–91. [Google Scholar] [CrossRef]
- Chen, W.; Ding, J.; Li, Y.; Niu, Z. Extraction of water information based on China-made GF-1 remote sense image. Resour. Sci. 2015, 37, 1166–1172. [Google Scholar]
- Li, D.; Wu, B.S.; Chen, B.W.; Xue, Y.; Zhang, Y. Review of water body information extraction based on satellite remote sensing. J. Tsinghua Univ. (Sci. Technol.) 2020, 60, 147–161. [Google Scholar]
- Yang, X.C.; Qin, Q.M.; Grussenmeyer, P.; Koehl, M. Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2MSI imagery. Remote Sens. Environ. 2018, 219, 259–270. [Google Scholar] [CrossRef]
- Wang, X.; Gong, Z.; Pu, R. Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: A case study of the Guanting Reservoir, Beijing, China. Environ. Monit. Assess. 2018, 190, 620. [Google Scholar] [CrossRef] [PubMed]
- Torbick, N.; Hu, F.; Zhang, J.; Qi, J.; Zhang, H.; Becker, B. Mapping chlorophyll-a concentrations in West Lake, China using Landsat 7 ETM+. J. Great Lakes Res. 2008, 34, 559–565. [Google Scholar] [CrossRef]
- Yao, F.; Wang, C.; Dong, D.; Luo, J.; Shen, Z.; Yang, K. High-resolution mapping of urban surface water using ZY-3 multi-spectral imagery. Remote Sens. 2015, 7, 12336–12355. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Yang, X.C.; Chen, Y.; Wang, J.Z. Combined use of Sentinel-2 and Landsat 8 to monitor water surface area dynamics using Google Earth Engine. Remote Sens. Lett. 2020, 11, 687–696. [Google Scholar] [CrossRef]
- Peltoniemi, J.I.; Suomalainen, J.; Puttonen, E.; Näränen, J.; Rautiainen, M. Reflectance properties of selected arctic-boreal land cover types: Field measurements and their application in remote sensing. Biogeosci. Discuss. 2008, 5, 1069–1095. [Google Scholar]
- Abbas, A.W.; Minallh, N.; Ahmad, N.; Abid, S.A.R.; Khan, M.A.A. K-Means and ISODATA clustering algorithms for landcover classification using remote sensing. Sindh Univ. Res. J.-SURJ (Sci. Ser.) 2016, 48, 315–318. [Google Scholar]
- Li, X.; Liu, L.; Huang, L. Comparison of several remote sensing image classification methods based on envi. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 42, 605–611. [Google Scholar] [CrossRef]
- Ji, H.X.; Fan, X.W.; Wu, G.P.; Liu, Y.B. Accuracy comparison and analysis of methods for water area extraction of discrete lakes. J. Lake Sci. 2015, 27, 327–334. [Google Scholar]
- Liu, S.; Wu, Y.; Zhang, G.; Lin, N.; Liu, Z. Comparing Water Indices for Landsat Data for Automated Surface Water Body Extraction under Complex Ground Background: A Case Study in Jilin Province. Remote Sens. 2023, 15, 1678. [Google Scholar] [CrossRef]
- Tian, Q.; Zhao, H.J.; Lin, Y.; Xiao, F.J. Performance Evaluation of Machine Learning in Wireless Connected Robotics Swarms. IEEE Access 2019, 8, 1790–1802. [Google Scholar] [CrossRef]
- Fitzgerald, R.W.; Lees, B.G. Assessing the classification accuracy of multisource remote sensing data. Remote Sens. Environ. 1994, 47, 362–368. [Google Scholar] [CrossRef]
- Barsi, Á.; Kugler, Z.; László, I.; Szabó, G.; Abdulmutalib, H.M. Accuracy dimensions in remote sensing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 61–67. [Google Scholar] [CrossRef]
- Wang, X.; Xie, S.; Du, J. Water index formulation and its effectiveness research on the complicated surface water surroundings. J. Remote Sens. 2018, 22, 360–372. [Google Scholar] [CrossRef]
- Moreira, R.D.C.; Galvão, L.S. Variation in spectral shape of urban materials. Remote Sens. Lett. 2010, 1, 149–158. [Google Scholar] [CrossRef]
- Ye, C.M.; Cui, P.; Pirasteh, S.; Li, J.; Li, Y. Experimental approach for identifying building surface materials based on hyperspectral remote sensing imagery. J. Zhejiang Univ.-SCIENCE A 2017, 18, 984–990. [Google Scholar] [CrossRef]
- Zhai, H.; Zhang, H.; Zhang, L.; Li, P. Cloud/shadow detection based on spectral indices for multi/hyperspectral optical remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2018, 144, 235–253. [Google Scholar] [CrossRef]
- AlMaazmi, A. Water bodies extraction from high resolution satellite images using water indices and optimal threshold. Image Signal Process. Remote Sens. XXII 2016, 10004, 509–521. [Google Scholar]
- Shahtahmassebi, A.; Yang, N.; Wang, K.; Moore, N.; Shen, Z. Review of shadow detection and de-shadowing methods in remote sensing. Chin. Geogr. Sci. 2013, 23, 403–420. [Google Scholar] [CrossRef]
- Liu, W.; Yamazaki, F. Object-based shadow extraction and correction of high-resolution optical satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1296–1302. [Google Scholar] [CrossRef]
Test Site | Location | Satellite | Acquisition Date | Typical Land Cover Features |
---|---|---|---|---|
1 | Dong Lake (Shangrao) | Sentinel-2B | 10 July 2022 | Water bodies, urban buildings, vegetation, cultivated lands |
2 | Dagang Reservoir | Sentinel-2B | 10 July 2022 | Water bodies, dense vegetation, cloud and its shadow, cultivated lands |
3 | West Lake | Sentinel-2B | 14 March 2023 | Water bodies, urban buildings and its shadow, dense vegetation |
4 | Hala Lake | Sentinel-2A | 23 May 2022 | Water bodies, alpine terrain, glacier, bare ground |
5 * | Taiyang Lake | Sentinel-2B | 22 September 2022 | Water bodies, alpine terrain, glacier, bare ground |
6 | Chengdian Reservoir | Sentinel-2B | 7 November 2020 | Water bodies, cultivated lands, vegetation, bare ground |
Bands | Central Wavelength (nm) | Resolution (m) |
---|---|---|
Band1-Coastal Aerosol | 443 | 60 |
Band2-Blue | 490 | 10 |
Band3-Green | 560 | 10 |
Band4-Red | 665 | 10 |
Band5-Vegetation Red Edge 1 | 705 | 20 |
Band6-Vegetation Red Edge 2 | 740 | 20 |
Band7-Vegetation Red Edge 3 | 783 | 20 |
Band8-Near Infrared | 843 | 10 |
Band8A-Vegetation Red Edge 4 | 865 | 20 |
Band9-Water Vapor | 945 | 60 |
Band10-Shortwave Infrared 1 | 1375 | 60 |
Band11-Shortwave Infrared 2 | 1610 | 20 |
Band12-Shortwave Infrared 3 | 2190 | 20 |
Water Index | Reference | Equation |
---|---|---|
NDWI | McFeeters [20] | |
RNDWI | Cao et al. [23] | |
MNDWI | Xu [21] | |
SWI | Chen et al. [25] | |
RWI | Wu et al. [22] | |
MBWI | Wang et al. [24] | |
AWEIsh | Feyisa et al. [9] | |
AWEInsh | Feyisa et al. [9] |
Test Site | Water Index | OA (%) | Kappa | PA (%) | UA (%) | OE (%) | CE (%) | TE (%) |
---|---|---|---|---|---|---|---|---|
1 (Dong Lake) | SMBWI | 98.00 | 0.95 | 95.71 | 97.81 | 4.29 | 2.19 | 6.48 |
RWI | 95.33 | 0.89 | 95.48 | 97.69 | 4.52 | 2.31 | 6.83 | |
MBWI | 94.67 | 0.88 | 99.29 | 85.80 | 0.71 | 14.20 | 14.91 | |
AWEInsh | 93.78 | 0.86 | 95.71 | 85.90 | 4.29 | 14.10 | 18.39 | |
MNDWI | 90.67 | 0.79 | 95.71 | 78.82 | 4.29 | 21.18 | 25.47 | |
AWEIsh | 89.11 | 0.77 | 98.57 | 74.59 | 1.43 | 25.41 | 26.84 | |
NDWI | 86.67 | 0.72 | 96.43 | 71.05 | 3.57 | 28.95 | 32.52 | |
RNDWI | 79.33 | 0.59 | 97.86 | 60.35 | 2.14 | 39.65 | 41.79 | |
SWI | 76.22 | 0.52 | 92.14 | 57.33 | 7.86 | 42.67 | 50.53 |
Test Site | Water Index | OA (%) | Kappa | PA (%) | UA (%) | OE (%) | CE (%) | TE (%) |
---|---|---|---|---|---|---|---|---|
2 (Dagang Reservoir) | SMBWI | 97.50 | 0.94 | 94.17 | 96.58 | 5.83 | 3.42 | 9.25 |
MBWI | 96.82 | 0.92 | 95.83 | 92.74 | 4.17 | 7.26 | 11.43 | |
NDWI | 95.91 | 0.90 | 95.83 | 89.84 | 4.17 | 10.16 | 14.33 | |
AWEInsh | 94.77 | 0.87 | 94.17 | 87.60 | 5.83 | 12.40 | 18.23 | |
RWI | 93.64 | 0.85 | 95.00 | 83.82 | 5.00 | 16.18 | 21.18 | |
AWEIsh | 92.95 | 0.83 | 95.83 | 81.56 | 4.17 | 18.44 | 22.61 | |
SWI | 91.14 | 0.79 | 93.33 | 78.32 | 6.67 | 21.68 | 28.35 | |
MNDWI | 78.86 | 0.56 | 96.67 | 56.59 | 3.33 | 43.41 | 46.74 | |
RNDWI | 76.36 | 0.52 | 95.83 | 53.74 | 4.17 | 46.26 | 50.43 |
Test Site | Water Index | OA (%) | Kappa | PA (%) | UA (%) | OE (%) | CE (%) | TE (%) |
---|---|---|---|---|---|---|---|---|
3 (West Lake) | SMBWI | 96.59 | 0.91 | 94.55 | 92.86 | 5.45 | 7.14 | 12.59 |
AWEInsh | 95.12 | 0.88 | 92.73 | 89.47 | 7.27 | 10.53 | 17.80 | |
AWEIsh | 93.17 | 0.83 | 94.55 | 82.54 | 5.45 | 17.46 | 22.91 | |
MBWI | 92.20 | 0.81 | 92.73 | 80.95 | 7.27 | 19.05 | 26.32 | |
RWI | 90.73 | 0.78 | 94.55 | 76.47 | 5.45 | 23.53 | 28.98 | |
NDWI | 90.24 | 0.77 | 96.36 | 74.65 | 3.64 | 25.35 | 28.99 | |
MNDWI | 89.27 | 0.75 | 92.73 | 73.91 | 7.27 | 26.09 | 33.36 | |
RNDWI | 81.46 | 0.60 | 94.55 | 59.77 | 5.45 | 40.23 | 45.68 | |
SWI | 70.73 | 0.44 | 96.36 | 47.75 | 3.64 | 52.25 | 55.89 |
Test Site | Water Index | OA (%) | Kappa | PA (%) | UA (%) | OE (%) | CE (%) | TE (%) |
---|---|---|---|---|---|---|---|---|
4 (Hala Lake) | SMBWI | 99.64 | 0.99 | 99.00 | 99.66 | 1.00 | 0.34 | 1.34 |
NDWI | 93.37 | 0.84 | 97.67 | 81.62 | 2.33 | 18.38 | 20.71 | |
MNDWI | 87.09 | 0.71 | 97.67 | 68.46 | 2.33 | 31.54 | 33.87 | |
SWI | 84.45 | 0.65 | 95.33 | 64.56 | 4.67 | 35.44 | 40.11 | |
AWEIsh | 82.55 | 0.62 | 95.67 | 61.59 | 4.33 | 38.41 | 42.74 | |
AWEInsh | 81.64 | 0.62 | 99.67 | 59.80 | 0.33 | 40.20 | 40.53 | |
MBWI | 68.09 | 0.41 | 99.00 | 46.05 | 1.00 | 53.95 | 54.95 | |
RWI | 63.00 | 0.34 | 98.00 | 42.30 | 2.00 | 57.70 | 59.70 | |
RNDWI | 59.36 | 0.30 | 98.00 | 40.00 | 2.00 | 60.00 | 62.00 |
Test Site | Water Index | OE (%) | CE (%) | TE (%) |
---|---|---|---|---|
6 (Chengdian Reservoir) | SMBWI | 10.63% | 8.21% | 18.84% |
AWEIsh | 8.21% | 15.11% | 23.32% | |
RWI | 12.50% | 12.13% | 24.63% | |
MBWI | 22.01% | 3.73% | 25.74% | |
AWEInsh | 19.78% | 13.62% | 33.40% | |
NDWI | 15.86% | 18.10% | 33.96% | |
SWI | 12.50% | 23.13% | 35.63% | |
MNDWI | 30.41% | 20.52% | 50.93% | |
RNDWI | 26.68% | 41.79% | 68.47% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Z.; Xiang, L.; Steffen, H.; Jia, L.; Deng, F.; Wang, W.; Hu, K.; Guo, J.; Nong, A.; Cui, H.; et al. A New and Robust Index for Water Body Extraction from Sentinel-2 Imagery. Remote Sens. 2024, 16, 2749. https://doi.org/10.3390/rs16152749
Su Z, Xiang L, Steffen H, Jia L, Deng F, Wang W, Hu K, Guo J, Nong A, Cui H, et al. A New and Robust Index for Water Body Extraction from Sentinel-2 Imagery. Remote Sensing. 2024; 16(15):2749. https://doi.org/10.3390/rs16152749
Chicago/Turabian StyleSu, Zhenfeng, Longwei Xiang, Holger Steffen, Lulu Jia, Fan Deng, Wenliang Wang, Keyu Hu, Jingjing Guo, Aile Nong, Haifu Cui, and et al. 2024. "A New and Robust Index for Water Body Extraction from Sentinel-2 Imagery" Remote Sensing 16, no. 15: 2749. https://doi.org/10.3390/rs16152749
APA StyleSu, Z., Xiang, L., Steffen, H., Jia, L., Deng, F., Wang, W., Hu, K., Guo, J., Nong, A., Cui, H., & Gao, P. (2024). A New and Robust Index for Water Body Extraction from Sentinel-2 Imagery. Remote Sensing, 16(15), 2749. https://doi.org/10.3390/rs16152749