A Novel Method for CSAR Multi-Focus Image Fusion
Abstract
:1. Introduction
2. Method and Application
2.1. Characteristics of CSAR Images
2.2. Spatial Domain Method Based on SML
2.3. Concept of Guided Filter
2.4. Data Process
2.4.1. Multi-Layer Imaging
2.4.2. Focus Region Detection
2.4.3. Guided Filter
2.4.4. Fused Result
3. Experiments and Results
3.1. Evaluation Metrics
- All Cross-Entropy (ACE)
- 2.
- Structural similarity (SSIM)
- 3.
- Sum mutual information (SMI)
- 4.
- Edge retention (ER)
- 5.
- Equivalent Number of Looks (ENL)
3.2. Parameter Setting
3.3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.W.; An, D.X.; Wang, W.; Luo, Y.X.; Zhou, Z.M. Extended Polar Format Algorithm for Large-Scene High-Resolution WAS-SAR Imaging. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 5326–5338. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, Y.; Teng, F.; Feng, S.S.; Hong, W. Holographic SAR Volumetric Imaging Strategy for 3-D Imaging with Single-Pass Circular InSAR Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Octavio, P.; Pau, P.I.; Muriel, P.; Marc, R.C.; Rolf, S.; Andreas, R.; Alberto, M. Fully Polarimetric High-Resolution 3-D Imaging with Circular SAR at Lband. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3074–3090. [Google Scholar]
- Chen, L.P.; An, D.X.; Huang, X.T. A Backprojection Based Imaging for Circular Synthetic Aperture Radar. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 3547–3555. [Google Scholar] [CrossRef]
- Fan, B.; Qin, Y.L.; You, P.; Wang, H.Q. An Improved PFA with Aperture Accommodation for Widefield Spotlight SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2015, 12, 3–7. [Google Scholar] [CrossRef]
- Yang, Y.; Tong, S.; Huang, S.Y.; Lin, P. Multifocus Image Fusion Based on NSCT and Focused Area Detection. IEEE Sens. J. 2015, 15, 2824–2838. [Google Scholar]
- Karacan, L. Multi-image transformer for multi-focus image fusion. Signal Process. Image Commun. 2023, 119, 117058. [Google Scholar] [CrossRef]
- Li, S.T.; Kang, X.D.; Hu, J.W. Image fusion with guided filtering. IEEE Trans. Image Process. 2013, 22, 2864–2875. [Google Scholar]
- Liu, Y.; Liu, S.P.; Wang, Z.F. Multi-focus image fusion with dense SIFT. Inf. Fusion 2015, 23, 139–155. [Google Scholar] [CrossRef]
- Bouzos, O.; Andreadis, I.; Mitianoudis, N. Conditional random field model for robust multi-focus image fusion. IEEE Trans. Image Process. 2019, 28, 5636–5648. [Google Scholar] [CrossRef]
- Chen, Y.B.; Guan, J.W.; Cham, W.K. Robust multi-focus image fusion using edge model and multi-matting. IEEE Trans. Image Process. 2018, 27, 1526–1541. [Google Scholar] [CrossRef]
- Xiao, B.; Ou, G.; Tang, H.; Bi, X.L.; Li, W.S. Multi-focus image fusion by hessian matrix based decomposition. IEEE Trans. Multimed. 2020, 22, 285–297. [Google Scholar] [CrossRef]
- Zhang, L.X.; Zeng, G.P.; Wei, J.J. Adaptive region-segmentation multi-focus image fusion based on differential evolution. Int. J. Pattern Recognit. Artif. Intell. 2019, 33, 1954010. [Google Scholar] [CrossRef]
- Li, M.; Cai, W.; Tan, Z. A region-based multi-sensor image fusion scheme using pulse-coupled neural network. Pattern Recognit. Lett. 2006, 27, 1948–1956. [Google Scholar] [CrossRef]
- Ranchin, T.; Wald, L. The wavelet transform for the analysis of remotely sensed images. Int. J. Remote Sens. 1993, 14, 615–619. [Google Scholar] [CrossRef]
- Shi, Q.; Li, J.W.; Yang, W.; Zeng, H.C.; Zhang, H.J. Multi-aspect SAR image fusion method based on wavelet transform. J. Beijing Univ. Aeronaut. Astronaut. 2017, 43, 2135–2142. [Google Scholar]
- Cunha, A.; Zhou, J.P.; Do, M.N. The Nonsubsampled Contourlet Transform: Theory, Design, and Applications. IEEE Trans. Image Process. 2006, 15, 3089–3101. [Google Scholar] [CrossRef] [PubMed]
- Li, X.S.; Zhou, F.Q.; Tan, H.S.; Chen, Y.Z.; Zou, W.X. Multi-focus image fusion based on nonsubsampled contourlet transform and residual removal. Signal Process. 2021, 184, 108062. [Google Scholar] [CrossRef]
- Easley, G.; Labate, D.; Lim, W.Q. Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal. 2008, 25, 25–46. [Google Scholar] [CrossRef]
- Yang, B.; Li, S.T. Multifocus image fusion and restoration with sparse representation. IEEE Trans. Instrum. Meas. 2010, 59, 884–892. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Li, S.; Wang, B. Multi-scale weighted gradient-based fusion for multi-focus images. Inf. Fusion 2014, 20, 60–72. [Google Scholar] [CrossRef]
- Liu, Z.D.; Chai, Y.; Yin, H.P.; Zhou, J.Y.; Zhu, Z.Q. A novel multi-focus image fusion approach based on image decomposition. Inf. Fusion 2017, 35, 102–116. [Google Scholar] [CrossRef]
- An, D.X.; Huang, J.N.; Chen, L.P.; Feng, D.; Zhou, Z.M. A NSST-Based Fusion Method for Airborne Dual-Frequency, High-Spatial-Resolution SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 4362–4370. [Google Scholar]
- Liu, Y.; Chen, X.; Peng, H.; Wang, Z.F. Multi-focus image fusion with a deep convolutional neural network. Inf. Fusion 2017, 36, 191–207. [Google Scholar] [CrossRef]
- Du, C.B.; Gao, S.S. Image segmentation-based multi-focus image fusion through multi-scale convolutional neural network. IEEE Access 2017, 5, 15750–15761. [Google Scholar] [CrossRef]
- Ma, B.; Zhu, Y.; Yin, X.; Ban, X.J.; Huang, H.Y.; Mukeshimana, M. Sesf-fuse: An unsupervised deep model for multi-focus image fusion. Neural Comput. Appl. 2021, 33, 5793–5804. [Google Scholar] [CrossRef]
- Xiao, B.; Xu, B.C.; Bi, X.L.; Li, W.S. Global-feature encoding U-Net (GEU-Net) for multi-focus image fusion. IEEE Trans. Image Process. 2021, 30, 163–175. [Google Scholar] [CrossRef]
- Ma, B.Y.; Yin, X.; Wu, D.; Shen, H.K.; Ban, X.J.; Wang, Y. End-to-end learning for simultaneously generating decision map and multi-focus image fusion result. Neurocomputing 2022, 470, 204–216. [Google Scholar] [CrossRef]
- He, K.M.; Sun, J.; Tang, X.O. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef]
- Sun, X.L.; Wang, Z.Y.; Fu, Y.Q.; Yi, Y.; He, X.H. Fast image fusion based on sum of modified Laplacian. Comput. Eng. Appl. 2015, 5, 193–197. [Google Scholar]
- Li, J.X.; Chen, L.P.; An, D.X.; Feng, D.; Song, Y.P. CSAR Multilayer Focusing Imaging Method. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Li, J.F.; Galdran, A. Multi-focus Microscopic Image Fusion Algorithm Based on Sparse Representation and Pulse Coupled Neural Network. Acta Microsc. 2020, 29, 1816–1823. [Google Scholar]
- Piella, G.; Heijmans, H. A new quality metric for image fusion. In Proceedings of the 2003 International Conference on Image Processing (Cat. No.03CH37429), Barcelona, Spain, 14–17 September 2003. [Google Scholar]
- Wang, Z.; Bovik, A.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Qu, G.H.; Zhang, D.L.; Yan, P.F. Information measure for performance of image fusion. Electron. Lett. 2002, 38, 313–315. [Google Scholar] [CrossRef]
- Xydeas, C.S.; Petrovic, V. Objective image fusion performance measure. Electron. Lett. 2000, 36, 308–309. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Carrier frequency | L band |
The velocity of the platform | 52 m/s |
The flight radius of the platform | 2000 m |
The altitude of the platform | 2000 m |
Method | ACE | SMI | SSIM | ENL | Time (s) | |
---|---|---|---|---|---|---|
Our | 0.4979 | 0.0064 | 4.8886 | 0.8748 | 2.7061 | 51 |
AG | 0.5243 | 0.0050 | 5.5499 | 0.8894 | 2.7686 | 647 |
NSST | 0.3652 | - | - | - | - | 1726 |
PCNN | 0.3291 | - | - | - | - | 9186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Chen, L.; An, D.; Feng, D.; Song, Y. A Novel Method for CSAR Multi-Focus Image Fusion. Remote Sens. 2024, 16, 2797. https://doi.org/10.3390/rs16152797
Li J, Chen L, An D, Feng D, Song Y. A Novel Method for CSAR Multi-Focus Image Fusion. Remote Sensing. 2024; 16(15):2797. https://doi.org/10.3390/rs16152797
Chicago/Turabian StyleLi, Jinxing, Leping Chen, Daoxiang An, Dong Feng, and Yongping Song. 2024. "A Novel Method for CSAR Multi-Focus Image Fusion" Remote Sensing 16, no. 15: 2797. https://doi.org/10.3390/rs16152797
APA StyleLi, J., Chen, L., An, D., Feng, D., & Song, Y. (2024). A Novel Method for CSAR Multi-Focus Image Fusion. Remote Sensing, 16(15), 2797. https://doi.org/10.3390/rs16152797