Asymmetric Response of the Indonesian Throughflow to Co-Occurring El Niño–Southern Oscillation–Indian Ocean Dipole Events
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Method
3. Results
3.1. Reanalysis Datasets Validation of ITF Volume Transport
3.2. Definition Sub-Modes of Climate Events
3.3. Contributions of Independent Climate Events to the ITF Transport
3.3.1. Independent ENSO Events
3.3.2. Independent IOD Events
3.4. Decoupling the Relative Contributions during Concurrent ENSO and IOD Events
3.4.1. Co-Occurring El Niño and Positive IOD Events
3.4.2. Co-Occurring La Niña and Negative IOD Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gordon, A.L.; Sprintall, J.; Van Aken, H.M.; Susanto, D.; Wijffels, S.; Molcard, R.; Ffield, A.; Pranowo, W.; Wirasantosa, S. The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dyn. Atmos. Oceans 2010, 50, 115–128. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Feng, M.; Wang, D.; Wijffels, S. Interannual variability of the Indonesian Throughflow transport: A revisit based on 30 year expendable bathythermograph data. J. Geophys. Res. Oceans 2015, 120, 8270–8282. [Google Scholar] [CrossRef]
- Sprintall, J.; Gordon, A.L.; Wijffels, S.E.; Feng, M.; Hu, S.; Koch-Larrouy, A.; Phillips, H.; Nugroho, D.; Napitu, A.; Pujiana, K. Detecting change in the Indonesian seas. Front. Mar. Sci. 2019, 6, 257. [Google Scholar] [CrossRef]
- Sprintall, J.; Wijffels, S.E.; Molcard, R.; Jaya, I. Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. J. Geophys. Res. Oceans 2009, 114, C7. [Google Scholar] [CrossRef]
- Susanto, R.D.; Ffield, A.; Gordon, A.L.; Adi, T.R. Variability of Indonesian throughflow within Makassar strait, 2004–2009. J. Geophys. Res. Oceans 2012, 117, C9. [Google Scholar] [CrossRef]
- Wijffels, S.E.; Meyers, G.; Godfrey, J.S. A 20-yr average of the Indonesian Throughflow: Regional currents and the interbasin exchange. J. Phys. Oceanogr. 2008, 38, 1965–1978. [Google Scholar] [CrossRef]
- Du, Y.; Qu, T. Three inflow pathways of the Indonesian throughflow as seen from the simple ocean data assimilation. Dyn. Atmos. Oceans 2010, 50, 233–256. [Google Scholar] [CrossRef]
- Godfrey, J. The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: A review. J. Geophys. Res. Oceans 1996, 101, 12217–12237. [Google Scholar] [CrossRef]
- Gordon, A.L. Interocean exchange of thermocline water. J. Geophys. Res. Oceans 1986, 91, 5037–5046. [Google Scholar] [CrossRef]
- Gordon, A.L. Oceanography of the Indonesian seas and their throughflow. Oceanography 2005, 18, 14–27. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, Y.; Feng, M.; Du, Y.; Sprintall, J.; Wang, F.; Hu, D.; Xie, Q.; Chai, F. Interannual to decadal variability of upper-ocean salinity in the southern Indian Ocean and the role of the Indonesian Throughflow. J. Clim. 2019, 32, 6403–6421. [Google Scholar] [CrossRef]
- Li, M.; Gordon, A.L.; Gruenburg, L.K.; Wei, J.; Yang, S. Interannual to decadal response of the Indonesian throughflow vertical profile to Indo-Pacific forcing. Geophys. Res. Lett. 2020, 47, e2020GL087679. [Google Scholar] [CrossRef]
- Sprintall, J.; Gordon, A.L.; Koch-Larrouy, A.; Lee, T.; Potemra, J.T.; Pujiana, K.; Wijffels, S.E. The Indonesian seas and their role in the coupled ocean–climate system. Nat. Geosci. 2014, 7, 487–492. [Google Scholar] [CrossRef]
- Yuan, D.; Yin, X.; Li, X.; Corvianawatie, C.; Wang, Z.; Li, Y.; Yang, Y.; Hu, X.; Wang, J.; Tan, S. A Maluku Sea intermediate western boundary current connecting Pacific Ocean circulation to the Indonesian Throughflow. Nat. Commun. 2022, 13, 2093. [Google Scholar] [CrossRef]
- Cai, W.; Sullivan, A.; Cowan, T. Interactions of ENSO, the IOD, and the SAM in CMIP3 models. J. Clim. 2011, 24, 1688–1704. [Google Scholar] [CrossRef]
- Gordon, A.L.; Susanto, R.D.; Ffield, A. Throughflow within makassar strait. Geophys. Res. Lett. 1999, 26, 3325–3328. [Google Scholar] [CrossRef]
- Hu, S.; Sprintall, J. Interannual variability of the Indonesian Throughflow: The salinity effect. J. Geophys. Res. Oceans 2016, 121, 2596–2615. [Google Scholar] [CrossRef]
- Meyers, G. Variation of Indonesian throughflow and the El Niño-southern oscillation. J. Geophys. Res. Oceans 1996, 101, 12255–12263. [Google Scholar] [CrossRef]
- Sprintall, J.; Révelard, A. The Indonesian throughflow response to Indo-Pacific climate variability. J. Geophys. Res. Oceans 2014, 119, 1161–1175. [Google Scholar] [CrossRef]
- Yuan, D.; Wang, J.; Xu, T.; Xu, P.; Hui, Z.; Zhao, X.; Luan, Y.; Zheng, W.; Yu, Y. Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: Roles of the Indonesian throughflow. J. Clim. 2011, 24, 3593–3608. [Google Scholar] [CrossRef]
- Gordon, A.L.; Napitu, A.; Huber, B.A.; Gruenburg, L.K.; Pujiana, K.; Agustiadi, T.; Kuswardani, A.; Mbay, N.; Setiawan, A. Makassar Strait throughflow seasonal and interannual variability: An overview. J. Geophys. Res. Oceans 2019, 124, 3724–3736. [Google Scholar] [CrossRef]
- Feng, M.; Meyers, G.; Wijffels, S. Interannual upper ocean variability in the tropical Indian Ocean. Geophys. Res. Lett. 2001, 28, 4151–4154. [Google Scholar] [CrossRef]
- Murtugudde, R.; Busalacchi, A.J.; Beauchamp, J. Seasonal-to-interannual effects of the Indonesian throughflow on the tropical Indo-Pacific Basin. J. Geophys. Res. Oceans 1998, 103, 21425–21441. [Google Scholar] [CrossRef]
- Saji, N.; Goswami, B.N.; Vinayachandran, P.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Pujiana, K.; McPhaden, M.J.; Gordon, A.L.; Napitu, A.M. Unprecedented response of Indonesian throughflow to anomalous Indo-Pacific climatic forcing in 2016. J. Geophys. Res. Oceans 2019, 124, 3737–3754. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, C. Contributions of Indo-Pacific Forcings to Interannual Variability of the Indonesian Throughflow in the Upper and Lower Layers. J. Geophys. Res. Oceans 2024, 129, e2023JC020306. [Google Scholar] [CrossRef]
- Li, A.; Zhang, Y.; Hong, M.; Shi, J.; Wang, J. Relative importance of ENSO and IOD on interannual variability of Indonesian Throughflow transport. Front. Mar. Sci. 2023, 10, 1182255. [Google Scholar] [CrossRef]
- Zhuang, Y.; Fu, R.; Santer, B.D.; Dickinson, R.E.; Hall, A. Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States. Proc. Natl. Acad. Sci. USA 2021, 118, e2111875118. [Google Scholar] [CrossRef]
- Gordon, A.; Susanto, R.; Ffield, A.; Huber, B.; Pranowo, W.; Wirasantosa, S. Makassar Strait throughflow, 2004 to 2006. Geophys. Res. Lett. 2008, 35, 24. [Google Scholar] [CrossRef]
- Balmaseda, M.A.; Hernandez, F.; Storto, A.; Palmer, M.; Alves, O.; Shi, L.; Smith, G.C.; Toyoda, T.; Valdivieso, M.; Barnier, B. The ocean reanalyses intercomparison project (ORA-IP). J. Oper. Oceanogr. 2015, 8 (Supp. S1), s80–s97. [Google Scholar] [CrossRef]
- Du, Y.; Cai, W.; Wu, Y. A new type of the Indian Ocean Dipole since the mid-1970s. J. Clim. 2013, 26, 959–972. [Google Scholar] [CrossRef]
- Polonsky, A.; Torbinsky, A. The IOD–ENSO interaction: The role of the Indian Ocean current’s system. Atmosphere 2021, 12, 1662. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Li, X.; Wang, Z.; Li, Y.; Hao, J.; Zhao, X.; Corvianawatie, C.; Surinati, D.; Yuan, D. Moored observations of the timor passage currents in the Indonesian seas. J. Geophys. Res. Oceans 2022, 127, e2022JC018694. [Google Scholar] [CrossRef]
CMEMS | HYCOM | SODA | OFES | Ensemble Mean | ||
---|---|---|---|---|---|---|
R | 0–300 m | 0.87 | 0.81 | 0.85 | 0.79 | 0.87 |
300–760 m | 0.72 | 0.39 | 0.55 | 0.71 | 0.72 | |
RMSE | 0–300 m | 3.39 | 7.79 | 4.93 | 1.79 | 4.25 |
300–760 m | 1.61 | 3.15 | 2.99 | 4.04 | 1.81 |
Event | Year |
---|---|
IOD-independent El Niño | 2002–2003, 2004–2005, 2009–2010 |
IOD-independent La Niña | 1995–1996, 1999–2000, 2008–2009, 2020–2021 |
ENSO-independent Positive IOD | 2012–2013, 2017–2018 |
ENSO-independent Negative IOD | 1996–1997, 2005–2006 |
El Niño co-occurring with Positive IOD | 1994–1995, 1997–1998, 2006–2007, 2015–2016, 2018–2019 |
La Niña co-occurring with Negative IOD | 1998–1999, 2010–2011, 2016–2017, 2021–2022 |
Years | Channels | Layers | ENSO (El Niño) | IOD (Positive IOD) | Rate |
---|---|---|---|---|---|
1994–1995 | Inflow | 0–300 m | 0.42 | −0.16 | 2.6:1 |
300–760 m | 1.17 | −0.50 | 2.3:1 | ||
Outflow | 0–300 m | 0.58 | 0.16 | 3.6:1 | |
300–760 m | 1.22 | −0.86 | 1.4:1 | ||
1997–1998 | Inflow | 0–300 m | 0.12 | −0.01 | 12:1 |
300–760 m | 1.42 | −0.85 | 1.7:1 | ||
Outflow | 0–300 m | 0.51 | 0.27 | 1.9:1 | |
300–760 m | 0.25 | −0.23 | 1.1:1 | ||
2006–2007 | Inflow | 0–300 m | 1.03 | 0.42 | 2.4:1 |
300–760 m | 0.41 | 0.31 | 1.3:1 | ||
Outflow | 0–300 m | 0.60 | 0.34 | 1.8:1 | |
300–760 m | 1.36 | −0.71 | 1.9:1 | ||
2015–2016 | Inflow | 0–300 m | 0.90 | 0.11 | 8.2:1 |
300–760 m | 0.61 | −0.38 | 1.6:1 | ||
Outflow | 0–300 m | 1.24 | −0.22 | 5.6:1 | |
300–760 m | 0.72 | −0.31 | 2.3:1 | ||
2018–2019 | Inflow | 0–300 m | 0.78 | 0.24 | 3.3:1 |
300–760 m | 0.58 | 0.33 | 1.8:1 | ||
Outflow | 0–300 m | 0.90 | 0.19 | 4.7:1 | |
300–760 m | 0.78 | 0.56 | 1.4:1 | ||
Avg | Inflow | 0–300 m | - | - | 5.5:1 |
300–760 m | - | - | 1.7:1 | ||
Outflow | 0–300 m | - | - | 3.5:1 | |
300–760 m | - | - | 1.6:1 |
Years | Channels | Layers | ENSO (La Niña) | IOD (Negative IOD) | Rate |
---|---|---|---|---|---|
1998–1999 | Inflow | 0–300 m | −0.18 | 1.02 | 1:5.6 |
300–760 m | −1.74 | 5.13 | 1:2.9 | ||
Outflow | 0–300 m | 0.10 | 0.82 | 1:8.2 | |
300–760 m | −0.62 | 1.52 | 1:2.5 | ||
2010–2011 | Inflow | 0–300 m | 0.28 | 1.27 | 1:4.5 |
300–760 m | 0.23 | 1.17 | 1:5 | ||
Outflow | 0–300 m | −0.57 | 2.40 | 1:4.2 | |
300–760 m | −0.29 | 1.17 | 1:4 | ||
2016–2017 | Inflow | 0–300 m | −0.30 | 2.63 | 1:8.8 |
300–760 m | 0.38 | 2.28 | 1:6 | ||
Outflow | 0–300 m | 0.09 | 1.74 | 1:8.3 | |
300–760 m | 0.36 | 1.07 | 1:3 | ||
2021–2022 | Inflow | 0–300 m | 0.12 | 0.64 | 1:5.3 |
300–760 m | −0.48 | 1.63 | 1:3.4 | ||
Outflow | 0–300 m | 0.33 | 1.70 | 1:5.2 | |
300–760 m | 0.68 | 2.44 | 1:3.6 | ||
Avg | Inflow | 0–300 m | - | - | 1:6 |
300–760 m | - | - | 1:4 | ||
Outflow | 0–300 m | - | - | 1:6.5 | |
300–760 m | - | - | 1:3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, A.; Zhang, Y.; Hong, M.; Xu, T.; Wang, J. Asymmetric Response of the Indonesian Throughflow to Co-Occurring El Niño–Southern Oscillation–Indian Ocean Dipole Events. Remote Sens. 2024, 16, 3395. https://doi.org/10.3390/rs16183395
Li A, Zhang Y, Hong M, Xu T, Wang J. Asymmetric Response of the Indonesian Throughflow to Co-Occurring El Niño–Southern Oscillation–Indian Ocean Dipole Events. Remote Sensing. 2024; 16(18):3395. https://doi.org/10.3390/rs16183395
Chicago/Turabian StyleLi, Aojie, Yongchui Zhang, Mei Hong, Tengfei Xu, and Jing Wang. 2024. "Asymmetric Response of the Indonesian Throughflow to Co-Occurring El Niño–Southern Oscillation–Indian Ocean Dipole Events" Remote Sensing 16, no. 18: 3395. https://doi.org/10.3390/rs16183395
APA StyleLi, A., Zhang, Y., Hong, M., Xu, T., & Wang, J. (2024). Asymmetric Response of the Indonesian Throughflow to Co-Occurring El Niño–Southern Oscillation–Indian Ocean Dipole Events. Remote Sensing, 16(18), 3395. https://doi.org/10.3390/rs16183395