Swarm Investigation of Ultra-Low-Frequency (ULF) Pulsation and Plasma Irregularity Signatures Potentially Associated with Geophysical Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Description and Geomagnetic Activity Conditions
2.2. The Swarm Time–Frequency Analysis (TFA) Toolbox
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Friis-Christensen, E.; Lühr, H.; Hulot, G. Swarm: “A constellation to study the Earth’s magnetic field”. Earth Planets Space 2006, 58, 351–358. [Google Scholar] [CrossRef]
- Balasis, G.; Papadimitriou, C.; Daglis, I.A.; Pilipenko, V. ULF wave power features in the topside ionosphere revealed by Swarm observations. Geophys. Res. Lett. 2015, 42, 6922–6930. [Google Scholar] [CrossRef]
- Papadimitriou, C.; Balasis, G.; Daglis, I.A.; Giannakis, O. An initial ULF wave index derived from 2 years of Swarm observations. Ann. Geophys. 2018, 36, 287–299. [Google Scholar] [CrossRef]
- Balasis, G.; Daglis, I.A.; Georgiou, M.; Papadimitriou, C.; Haagmans, R. Magnetospheric ULF wave studies in the frame of Swarm mission: A time–frequency analysis tool for automated detection of pulsations in magnetic and electric field observations. Earth Planets Space 2013, 65, 1385–1398. [Google Scholar] [CrossRef]
- Stolle, C.; Lühr, H.; Rother, M.; Balasis, G. Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J. Geophys. Res. 2006, 111, A02304. [Google Scholar] [CrossRef]
- Ghadjari, H.; Knudsen, D.; Skone, S. Standing Alfvén waves within equatorial plasma bubbles. Geophys. Res. Lett. 2022, 49, e2021GL097526. [Google Scholar] [CrossRef]
- Spogli, L.; Alfonsi, L.; Cesaroni, C. Stepping into an equatorial plasma bubble with a Swarm overfly. Space Weather 2023, 21, e2022SW003331. [Google Scholar] [CrossRef]
- Reddy, S.A.; Forsyth, C.; Aruliah, A.; Smith, A.; Bortnik, J.; Aa, E.; Kataria, D.O.; Lewis, G. Predicting Swarm equatorial plasma bubbles via machine learning and Shapley values. J. Geophys. Res. Space Phys. 2023, 128, e2022JA031183. [Google Scholar] [CrossRef]
- Stolle, C.; Siddiqui, T.A.; Schreiter, L.; Das, S.K.; Rusch, I.; Rother, M.; Doornbos, E. An empirical model of the occurrence rate of low latitude post-sunset plasma irregularities derived from CHAMP and Swarm magnetic observations. Space Weather 2024, 22, e2023SW003809. [Google Scholar] [CrossRef]
- Fraser-Smith, A.C.; Bernardi, A.; McGill, P.R.; Ladd, M.E.; Helliwell, R.A.; Villard, O.G. Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake. Geophys. Res. Lett. 1990, 17, 1465–1468. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kawate, R.; Molchanov, O.A.; Yumoto, K. Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys. Res. Lett. 1996, 23, 241–244. [Google Scholar] [CrossRef]
- Hayakawa, M.; Schekotov, A.; Potirakis, S.; Eftaxias, K. Criticality features in ULF magnetic fields prior to the 2011 Tohoku earthquake. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2015, 91, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Contoyiannis, Y.; Potirakis, S.M.; Eftaxias, K.; Hayakawa, M.; Schekotov, A. Intermittent criticality revealed in ULF magnetic fields prior to the 11 March 2011 Tohoku earthquake (Mw = 9). Physica A 2016, 452, 19–28. [Google Scholar] [CrossRef]
- Lazaridou-Varotsos, M.S. Earthquake Prediction by Seismic Electric Signals. The Success of the VAN Method Over Thirty Years; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Han, P.; Zhuang, J.; Hattori, K.; Chen, C.-H.; Febriani, F.; Chen, H.; Yoshino, C.; Yoshida, S. Assessing the potential earthquake precursory information in ULF magnetic data recorded in Kanto, Japan during 2000–2010: Distance and magnitude dependences. Entropy 2020, 22, 859. [Google Scholar] [CrossRef]
- Schekotov, A.; Chebrov, D.; Hayakawa, M.; Belyaev, G.; Berseneva, N. Short-term earthquake prediction in Kamchatka using low-frequency magnetic fields. Nat. Hazards 2020, 100, 735–755. [Google Scholar] [CrossRef]
- Hayakawa, M.; Schekotov, A.; Izutsu, J.; Nickolaenko, A.P.; Hobara, Y. Seismogenic ULF/ELF wave phenomena: Recent advances and future perspectives. Open J. Earthq. Res. 2023, 12, 45–113. [Google Scholar] [CrossRef]
- Potirakis, S.M.; Contoyiannis, Y.; Schekotov, A.; Eftaxias, K.; Hayakawa, M. Evidence of critical dynamics in various electromagnetic precursors. Eur. Phys. J. Spec. Top. 2021, 230, 151–177. [Google Scholar] [CrossRef]
- Malkotsis, P.; Papadopoulos, N.; Politis, D.Z.; Dimakos, D.; Exarhos, M.; Liadopoulos, E.; Contoyiannis, Y.; Charitopoulos, A.; Kontakos, K.; Koulouras, G.; et al. ELSEM-Net, a network of ground-based telemetric stations for the monitoring of fracture-induced electromagnetic emissions in Greece: Instrumentation, management and analysis of recent observations associated with strong earthquakes. Ann. Geophys. 2023, 66, SE638. [Google Scholar] [CrossRef]
- Potirakis, S.M.; Contoyiannis, Y. Indications for an alternative breaking of symmetry in fracture-induced electromagnetic emissions recorded prior to the 2023 Mw7.8 and Mw7.5 Turkey Earthquakes. Physica A 2024, 639, 129685. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Muto, F.; Horie, T.; Maekawa, S.; Hobara, Y.; Rozhnoi, A.A.; Solovieva, M.; Molchanov, O.A.; et al. A statistical study on the correlation between lower Ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes. J. Geoph. Res. 2010, 115, A09305. [Google Scholar] [CrossRef]
- Politis, D.Z.; Potirakis, S.M.; Contoyiannis, Y.; Potamitis, I.; Sasmal, S.; Yang, S.-S.; Hayakawa, M. Lower-ionosphere anomalies prior to strong earthquakes that occurred in north-central mainland Greece on March 2021 as revealed by multi-method analysis of VLF sub-ionospheric propagation data. Ann. Geophys. 2023, 66, SE645. [Google Scholar] [CrossRef]
- Pulinets, S.; Krankowski, A.; Hernandez-Pajares, M.; Marra, S.; Cherniak, I.; Zakharenkova, I.; Rothkaehl, H.; Kotulak, K.; Davidenko, D.; Blaszkiewicz, L.; et al. Ionosphere sounding for pre-seismic anomalies identification (INSPIRE): Results of the project and perspectives for the short-term earthquake forecast. Front. Earth Sci. 2021, 9, 610193. [Google Scholar] [CrossRef]
- Blaunstein, N.; Hayakawa, M. Short-term ionospheric precursors of earthquakes using vertical and oblique ionosondes. Phys. Chem. Earth 2009, 34, 496–507. [Google Scholar] [CrossRef]
- Balasis, G.; Mandea, M. Can electromagnetic disturbances related to the recent great earthquakes be detected by satellite magnetometers? Tectonophysics 2007, 431, 173–195. [Google Scholar] [CrossRef]
- Walker, S.N.; Kadirkamanathan, V.; Pokhotelov, O.A. Changes in the ultra-low frequency wave field during the precursor phase to the Sichuan earthquake, DEMETER observations. Ann. Geophys. 2013, 31, 1597–1603. [Google Scholar] [CrossRef]
- De Santis, A.; Balasis, G.; Pavón-Carrasco, F.J.; Cianchini, G.; Mandea, M. Potential earthquake precursory pattern from space: The 2015 Nepal event as seen by magnetic Swarm satellites. Earth Planet. Sci. Lett. 2017, 461, 119–126. [Google Scholar] [CrossRef]
- De Santis, A.; Marchetti, D.; Pavón-Carrasco, F.J.; Cianchini, G.; Perrone, L.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Campuzano, S.A.; Carbone, M.; et al. Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Sci. Rep. 2019, 9, 20287. [Google Scholar] [CrossRef]
- Rikitake, T. Earthquake precursors in Japan: Precursor time and detectability. Tectonophysics 1987, 136, 265–282. [Google Scholar] [CrossRef]
- De Santis, A.; Cianchini, G.; Marchetti, D.; Piscini, A.; Sabbagh, D.; Perrone, L.; Campuzano, S.A.; Inan, S. A Multiparametric Approach to Study the Preparation Phase of the 2019 M7.1 Ridgecrest (California, United States) Earthquake. Front. Earth Sci. 2020, 8, 540398. [Google Scholar] [CrossRef]
- INGV Working Group on the Amatrice Earthquake. Second Summary Report on the M6.0 Amatrice Earthquake of August 24, 2016 (Central Italy). 2016. Available online: https://zenodo.org/records/166241 (accessed on 6 September 2024).
- Knudsen, D.J.; Burchill, J.K.; Buchert, S.C.; Eriksson, A.I.; Gill, R.; Wahlund, J.-E.; Åhlen, L.; Smith, M.; Moffat, B. Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. J. Geophys. Res. Space Phys. 2017, 122, 2655–2673. [Google Scholar] [CrossRef]
- Jenner, M.; Coïsson, P.; Hulot, G.; Buresova, D.; Truhlik, V.; Chauvet, L. Total root electron content: A new metric for the ionosphere below low Earth orbiting satellites. Geophys. Res. Lett. 2024, 51, e2024GL110559. [Google Scholar] [CrossRef]
- Borovsky, J.E.; Shprits, Y.Y. Is the Dst index sufficient to define all geospace storms? J. Geophys. Res. Space Phys. 2017, 122, 11–543. [Google Scholar] [CrossRef]
- Finlay, C.; Kloss, C.; Olsen, N.; Hammer, M.D.; Toffner-Clausen, L.; Grayver, A.; Kushinov, A. The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly. Earth Planets Space 2020, 72, 156. [Google Scholar] [CrossRef] [PubMed]
- Katsavrias, C.; Papadimitriou, C.; Hillaris, A.; Balasis, G. Application of Wavelet Methods in the Investigation of Geospace Disturbances: A Review and an Evaluation of the Approach for Quantifying Wavelet Power. Atmosphere 2022, 13, 499. [Google Scholar] [CrossRef]
- Potirakis, S.M.; Contoyiannis, Y.; Schekotov, A.; Asano, T.; Hayakawa, M. Analysis of the ultra-low frequency magnetic field fluctuations prior to the 2016 Kumamoto (Japan) earthquakes in terms of the method of critical fluctuations. Physica A 2019, 514, 563–572. [Google Scholar] [CrossRef]
- Korsunova, L.P.; Khegai, V.V. Analysis of seismoionospheric disturbances at the chain of Japanese stations for vertical sounding of the Ionosphere. Geomagn. Aeron. 2008, 48, 392–399. [Google Scholar] [CrossRef]
- Marchetti, D.; Akhoondzadeh, M. Analysis of Swarm satellites data showing seismo-ionospheric anomalies around the time of the strong Mexico (Mw = 8.2) earthquake of 08 September 2017. Adv. Space Res. 2018, 62, 614–623. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Piscini, A.; Cianchini, G. Multi precursors analysis associated with the powerful Ecuador (MW = 7.8) earthquake of 16 April 2016 using Swarm satellites data in conjunction with other multi-platform satellite and ground data. Adv. Space Res. 2018, 61, 248–263. [Google Scholar] [CrossRef]
- De Santis, A.; Marchetti, D.; Spogli, L.; Cianchini, G.; Pavón-Carrasco, F.J.; Franceschi, G.D.; Di Giovambattista, R.; Perrone, L.; Qamili, E.; Cesaroni, C.; et al. Magnetic Field and Electron Density Data Analysis from Swarm Satellites Searching for Ionospheric Effects by Great Earthquakes: 12 Case Studies from 2014 to 2016. Atmosphere 2018, 10, 371. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; D’Arcangelo, S.; Poggio, F.; Jin, S.; Piscini, A.; Campuzano, S.A. Magnetic Field and Electron Density Anomalies from Swarm Satellites Preceding the Major Earthquakes of the 2016–2017 Amatrice-Norcia (Central Italy) Seismic Sequence. Pure Appl. Geoph. 2019, 177, 305–319. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Piscini, A.; Jin, S. Anomalous seismo-LAI variations potentially associated with the 2017 Mw = 7.3 Sarpol-e Zahab (Iran) earthquake from Swarm satellites, GPS-TEC and climatological data. Adv. Space Res. 2019, 64, 143–158. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; Campuzano, S.A.; Soldani, M.; Piscini, A.; Sabbagh, D.; Cianchini, G.; Perrone, L.; Orlando, M. Swarm Satellite Magnetic Field Data Analysis Prior to 2019 Mw = 7.1 Ridgecrest (California, USA) Earthquake. Geosciences 2020, 10, 502. [Google Scholar] [CrossRef]
- Sasmal, S.; Chowdhury, S.; Kundu, S.; Politis, D.Z.; Potirakis, S.M.; Balasis, G.; Hayakawa, M.; Chakrabarti, S.K. Pre-Seismic Irregularities during the 2020 Samos (Greece) Earthquake (M = 6.9) as Investigated from Multi-Parameter Approach by Ground and Space-Based Techniques. Atmosphere 2021, 12, 1059. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Shen, X. Swarm-TEC Satellite Measurements as a Potential Earthquake Precursor Together With Other Swarm and CSES Data: The Case of Mw7.6 2019 Papua New Guinea Seismic Event. Front. Earth Sci. Sec. Geohazards Georisks 2022, 10, 820189. [Google Scholar] [CrossRef]
- Ghamry, E.; Mohamed, E.K.; Sekertekin, A.; Fathy, A. Integration of multiple earthquakes precursors before large earthquakes: A case study of 25 April 2015 in Nepal. J. Atmos. Sol.-Terr. Phys. 2023, 242, 105982. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; De Santis, A.; Perrone, L.; Xiong, P.; Zhang, X.; Du, X. Lithosphere-atmosphere-ionosphere coupling associated with four Yutian earthquakes in China from GPS TEC and electromagnetic observations onboard satellites. J. Geodyn. 2023, 155, 101943. [Google Scholar] [CrossRef]
- Zhang, X.; De Santis, A.; Liu, J.; Campuzano, S.A.; Yang, N.; Cianchini, G.; Ouyang, X.; D’Arcangelo, S.; Yang, M.; De Caro, M.; et al. Pre-Earthquake Oscillating and Accelerating Patterns in the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) before the 2022 Luding (China) Ms6.8 Earthquake. Remote Sens. 2024, 16, 2381. [Google Scholar] [CrossRef]
- Ozsoz, I.; Pamukçu, O.A.; Timoçin, E. Time-dependent magnetic anomaly variations in Turkey and Greece using swarm satellites: A comprehensive precursory multi-track analysis of M ≥ 6 earthquakes from 2017 to 2020. J. Atm. Solar-Terr. Phys. 2024, 258, 106210. [Google Scholar] [CrossRef]
- Heki, K. Ionospheric disturbances related to earthquakes. In Space Physics and Aeronomy Collection, Volume 3: Ionosphere Dynamics and Applications, Geophysical Monograph 260; Huang, C., Lu, G., Eds.; Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balasis, G.; De Santis, A.; Papadimitriou, C.; Boutsi, A.Z.; Cianchini, G.; Giannakis, O.; Potirakis, S.M.; Mandea, M. Swarm Investigation of Ultra-Low-Frequency (ULF) Pulsation and Plasma Irregularity Signatures Potentially Associated with Geophysical Activity. Remote Sens. 2024, 16, 3506. https://doi.org/10.3390/rs16183506
Balasis G, De Santis A, Papadimitriou C, Boutsi AZ, Cianchini G, Giannakis O, Potirakis SM, Mandea M. Swarm Investigation of Ultra-Low-Frequency (ULF) Pulsation and Plasma Irregularity Signatures Potentially Associated with Geophysical Activity. Remote Sensing. 2024; 16(18):3506. https://doi.org/10.3390/rs16183506
Chicago/Turabian StyleBalasis, Georgios, Angelo De Santis, Constantinos Papadimitriou, Adamantia Zoe Boutsi, Gianfranco Cianchini, Omiros Giannakis, Stelios M. Potirakis, and Mioara Mandea. 2024. "Swarm Investigation of Ultra-Low-Frequency (ULF) Pulsation and Plasma Irregularity Signatures Potentially Associated with Geophysical Activity" Remote Sensing 16, no. 18: 3506. https://doi.org/10.3390/rs16183506
APA StyleBalasis, G., De Santis, A., Papadimitriou, C., Boutsi, A. Z., Cianchini, G., Giannakis, O., Potirakis, S. M., & Mandea, M. (2024). Swarm Investigation of Ultra-Low-Frequency (ULF) Pulsation and Plasma Irregularity Signatures Potentially Associated with Geophysical Activity. Remote Sensing, 16(18), 3506. https://doi.org/10.3390/rs16183506