Analysis on Ecological Network Pattern Changes in the Pearl River Delta Forest Urban Agglomeration from 2000 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Data Sources
2.1.1. Research Area
2.1.2. Data Sources
2.2. Research Methods
2.2.1. Morphological Spatial Pattern Analysis Method
2.2.2. Minimum Cumulative Resistance Model
3. Results
3.1. Ecological Source Identification Based on the MSPA Method
3.2. Ecological Resistance Surface Construction Based on the MCR Model
3.3. Time Series Ecological Networks Construction Based on the MSPA and MCR Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Xiao, W.; Zhao, Y.; Lv, X. Incorporating ecological risk index in the multi-process MCRE model to optimize the ecological security pattern in a semi-arid area with intensive coal mining: A case study in northern China. J. Clean. Prod. 2020, 247, 119143. [Google Scholar] [CrossRef]
- Baral, H.; Keenan, R.J.; Sharma, S.K.; Stork, N.E.; Kasel, S. Spatial assessment and mapping of biodiversity and conservation priorities in a heavily modified and fragmented production landscape in north-central Victoria, Australia. Ecol. Indic. 2014, 36, 552–562. [Google Scholar] [CrossRef]
- Sui, L.; Yan, Z.; Li, K.; Wang, C.; Shi, Y.; Du, Y. Prediction of ecological security network in Northeast China based on landscape ecological risk. Ecol. Indic. 2024, 160, 111783. [Google Scholar] [CrossRef]
- Eimassah, S.; Mohieldin, M. Digital transformation and localizing the Sustainable Development Goals (SDGs). Ecol. Econ. 2020, 169, 106490. [Google Scholar] [CrossRef]
- Guo, H. Big Earth data facilitates sustainable development goals. Big Earth Data. 2020, 4, 1–2. [Google Scholar] [CrossRef]
- Mondejar, M.E.; Avtar, R.; Diaz, H.L.B.; Dubey, R.K.; Esteban, J.; Gómez-Morales, A.; Hallam, B.; Mbungu, N.T.; Okolo, C.C.; Prasad, K.A.; et al. Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet. Sci. Total Environ. 2021, 794, 148539. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, Q. Integrating China’s Ecological Civilization Building and 2030 Agenda for Sustainable Development. Glob. Rev. 2021, 13, 134–151+157–158. [Google Scholar] [CrossRef]
- Aminzadeh, B.; Khansefid, M. A case study of urban ecological networks and a sustainable city: Tehran’s metropolitan area. Urban Ecosyst. 2010, 13, 23–36. [Google Scholar] [CrossRef]
- Tong, H.; Shi, P. Using ecosystem service supply and ecosystem sensitivity to identify landscape ecology security patterns in the Lanzhou- Xining urban agglomeration, China. J. Mt. Sci. 2020, 17, 2758–2773. [Google Scholar] [CrossRef]
- Chen, X.; Kang, B.; Li, M.; Du, Z.; Zhang, L.; Li, H. Identification of priority areas for territorial ecological conservation and restoration based on ecological networks: A case study of Tianjin City, China. Ecol. Indic. 2023, 146, 109809. [Google Scholar] [CrossRef]
- Wickham, J.D.; Riitters, K.H.; Wade, T.G.; Vogt, P. A national assessment of green infrastructure and change for the conterminous United States using morphological image processing. Landsc. Urban Plan. 2010, 94, 186–195. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Xu, X.H. Research on landscape ecological security pattern in a Eucalyptus introduced region based on biodiversity conservation. Russ. J. Ecol. 2015, 46, 59–70. [Google Scholar] [CrossRef]
- Knaapen, J.P.; Scheffer, M.; Harms, B. Estimating habitat isolation in landscape planning. Landsc. Urban Plan. 1992, 23, 1–16. [Google Scholar] [CrossRef]
- Yu, K. Land Scape Ecological Security Patterns in Biological Conservation. Acta Ecol. Sin. 1999, 19, 8. [Google Scholar]
- Vogt, P.; Ferrari, J.R.; Lookingbill, T.R.; Gardner, R.H.; Riitters, K.H.; Ostapowicz, K. Mapping functional connectivity. Ecol. Indic. 2009, 9, 64–71. [Google Scholar] [CrossRef]
- Yu, Y.; Haiwei, Y.; Kong, F.; Wang, J.; Xu, W. Scale effect of Nanjing urban green infrastructure network pattern and connectivity analysis. Chin. J. Appl. Ecol. 2016, 27, 2119–2127. [Google Scholar]
- Wang, Z.; Shi, Z.; Huo, J.; Zhu, W.; Yan, Y.; Ding, N. Construction and Optimization of an Ecological Network in Funiu Mountain Area Based on MSPA and MCR Models, China. Land 2023, 12, 1529. [Google Scholar] [CrossRef]
- Hu, J.; Jiao, S.; Xia, H.; Qian, Q. Construction of Rural Multifunctional Landscape Corridor Based on MSPA and MCR Model—Taking Liukeng Cultural and Ecological Tourism Area as an Example. Sustainability 2023, 15, 12262. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, F.; Li, X.; Johnson, V.C.; Tan, M.L.; Kung, H.-T.; Shi, J.; Bahtebay, J.; He, X. Methodology for Mapping the Ecological Security Pattern and Ecological Network in the Arid Region of Xinjiang, China. Remote Sens. 2023, 15, 2836. [Google Scholar] [CrossRef]
- Jiao, M.; Wang, Y.; Hu, M.; Xia, B. Spatial deconstruction and differentiation analysis of early warning for ecological security in the Pearl River Delta, China. Sustain. Cities Soc. 2021, 64, 102557. [Google Scholar] [CrossRef]
- Wei, H.; Zhu, H.; Chen, J.; Jiao, H.; Li, P.; Xiong, L. Construction and Optimization of Ecological Security Pattern in the Loess Plateau of China Based on the Minimum Cumulative Resistance (MCR) Model. Remote Sens. 2022, 14, 5906. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Yang, Y.; You, H.; Han, X. Construction and Optimization of an Ecological Network in the Yellow River Source Region Based on MSPA and MCR Modelling. Int. J. Environ. Res. Public Health 2023, 20, 3724. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Bao, Y.; Wang, Z.; Chen, X.; Wei, W. Multi-temporal evaluation and optimization of ecological network in multi-mountainous city. Ecol. Indic. 2023, 146, 109794. [Google Scholar] [CrossRef]
- Qiu, S.; Fang, M.; Yu, Q.; Niu, T.; Liu, H.; Wang, F.; Xu, C.; Ai, M.; Zhang, J. Study of spatialtemporal changes in Chinese forest eco-space and optimization strategies for enhancing carbon sequestration capacity through ecological spatial network theory. Sci. Total Environ. 2023, 859, 160035. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, S.; Wen, H.; Fan, X. Research on Multi-Scale Ecological Network Connectivity—Taking the Guangdong–Hong Kong–Macao Greater Bay Area as a Case Study. Int. J. Environ. Res. Public Health 2022, 19, 15268. [Google Scholar] [CrossRef]
- Yang, W.; Ye, H. Identification of ecological networks in the Guangdong-Hong Kong-Macao Greater Bay Area based on habitat quality assessment. Acta Ecol. Sin. 2023, 43, 10430–10442. [Google Scholar]
- He, X.; Cao, Y.; Zhou, C. Evaluation of Polycentric Spatial Structure in the Urban Agglomeration of the Pearl River Delta (PRD) Based on Multi-Source Big Data Fusion. Remote Sens. 2021, 13, 3639. [Google Scholar] [CrossRef]
- Feng, S.; Tang, Z.; Yu, L.; Guo, C.; Tang, M.; Yang, Z. Collaborative construction of ecological network in urban agglomerations: A case study of Guangdong-Hong Kong-Macao Greater Bay Area. Acta Ecol. Sin. 2022, 42, 8223–8237. [Google Scholar]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, C.; Chen, X.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020, 12, 1625–1648. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Xie, S.; Gao, Y. Fine Land-Cover Mapping in China Using Landsat Datacube and an Operational SPECLib-Based Approach. Remote Sens. 2019, 11, 1056. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Gao, Y.; Chen, X.; Shuai, X.; Mi, J. Finer-Resolution Mapping of Global Land Cover: Recent Developments, Consistency Analysis, and Prospects. J. Remote Sens. 2021, 5289697. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; Sánchez de Miguel, A.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Zhang, Q.; Pandey, B.; Seto, K.C. A Robust Method to Generate a Consistent Time Series From DMSP/OLS Nighttime Light Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5821–5831. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, Z.; Zhong, Q.; Zhang, Q.; Zhang, L.; Zhang, R.; Yi, Y.; Zhang, G.; Li, X.; Liu, J. Delimitation of ecological corridors in a highly urbanizing region based on circuit theory and MSPA. Ecol. Indic. 2022, 142, 109258. [Google Scholar] [CrossRef]
- Wei, Q.; Halike, A.; Yao, K.; Chen, L.; Balati, M. Construction and optimization of ecological security pattern in Ebinur Lake Basin based on MSPA-MCR models. Ecol. Indic. 2022, 138, 108857. [Google Scholar] [CrossRef]
- Zhao, S.; Ma, Y.; Wang, J.; You, X. Landscape pattern analysis and ecological network planning of Tianjin City. Urban For. Urban Green. 2019, 46, 126479. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Bennett, E.M.; Gonzalez, A. Linking Landscape Connectivity and Ecosystem Service Provision: Current Knowledge and Research Gaps. Ecosystems 2013, 16, 894–908. [Google Scholar] [CrossRef]
- Clergeau, P.; Burel, F. The role of spatio-temporal patch connectivity at the landscape level: An example in a bird distribution. Landsc. Urban Plan. 1997, 38, 37–43. [Google Scholar] [CrossRef]
- Saura, S.; Vogt, P.; Velázquez, J.; Hernando, A.; Tejera, R. Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. For. Ecol. Manag. 2011, 262, 150–160. [Google Scholar] [CrossRef]
- Qi, S.; Luo, Z.; Chen, Y.; Zhao, J.; Lin, X. Construction and optimization of Ecological Network in Yuanzhou District Based on MSPA and the Least-Cost Path Method. Res. Agric. Mod. 2020, 41, 351–360. [Google Scholar] [CrossRef]
- Pullinger, M.G.; Johnson, C.J. Maintaining or restoring connectivity of modified landscapes: Evaluating the least-cost path model with multiple sources of ecological information. Landsc. Ecol. 2010, 25, 1547–1560. [Google Scholar] [CrossRef]
- Verbeylen, G.; De Bruyn, L.; Adriaensen, F.; Matthysen, E. Does matrix resistance influence Red squirrel (Sciurus vulgaris L. 1758) distribution in an urban landscape? Landsc. Ecol. 2003, 18, 791–805. [Google Scholar] [CrossRef]
- Wang, Q.; Fu, M.; Wei, L.; Han, Y.; Shi, N.; Li, J.; Quan, Z. Urban ecological security pattern based on source-sink landscape theory and MCR model: A case study of Ningguo City, Anhui Province. Acta Sci. Circumstantiae 2016, 36, 4546–4554. [Google Scholar]
- Wei, S.; Jiao, W.; Long, T.; Liu, H.; Bi, L.; Jiang, W.; Portnov, B.A.; Liu, M. A Relative Radiation Normalization Method of ISS Nighttime Light Images Based on Pseudo Invariant Features. Remote Sens. 2020, 12, 3349. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, W.; Yang, K.; Zhao, L. China urbanization process induced vegetation degradation and improvement in recent 20 years. Cities 2021, 114, 103207. [Google Scholar] [CrossRef]
- Shi, Y.; Lian, X. The evolution of the planning system in the process of large-scale and rapid urbanization in China. Trans. Plan. Urban Res. 2023, 2, 169–187. [Google Scholar] [CrossRef]
- Zhu, S.; Jiang, J.; Xiang, N.; Xu, F. Exploring the interrelationship and coupling coordination between new urbanization and green development in China. Environ. Dev. Sustain. 2024, 1–26. [Google Scholar] [CrossRef]
- Dutta, T.; Sharma, S.; McRae, B.H.; Roy, P.S.; DeFries, R. Connecting the dots: Mapping habitat connectivity for tigers in central India. Reg. Environ. Change 2016, 16, 53–67. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Huang, X.; Feng, Z. Dynamic evaluation on landscape connectivity of ecological land: A case study of Shenzhen, Guangdong Province of South China. Chin. J. Appl. Ecol. 2012, 23, 2543–2549. [Google Scholar] [CrossRef]
- Wang, F.; Kaiyong, W.; Yu, H.; Chen, T. Spatial differentiation and correlative factors of ecological recreation space distribution in the Pearl River Delta urban agglomeration. Geogr. Res. 2020, 39, 2148–2164. [Google Scholar] [CrossRef]
- Koen, E.L.; Bowman, J.; Garroway, C.J.; Mills, S.C.; Wilson, P.J. Landscape resistance and American marten gene flow. Landsc. Ecol. 2012, 27, 29–43. [Google Scholar] [CrossRef]
- Yang, L.; Suo, M.; Gao, S.; Jiao, H. Construction of an Ecological Network Based on an Integrated Approach and Circuit Theory: A Case Study of Panzhou in Guizhou Province. Sustainability 2022, 14, 9136. [Google Scholar] [CrossRef]
- Li, R. Study on the Landscape Security Pattern Using MSPA and MCR Models in the Upstrean of Nenjiang River. Master’s Thesis, Harbin Normal University, Harbin, China, 2020. [Google Scholar]
- Lookingbill, T.R.; Gardner Rh Fau—Ferrari, J.R.; Ferrari Jr Fau—Keller, C.E.; Keller, C.E. Combining a dispersal model with network theory to assess habitat connectivity. Ecol. Appl. 2010, 20, 427–441. [Google Scholar] [CrossRef]
Landscape Types | Definition | Ecological Implication |
---|---|---|
Core | A set of pixels whose distance from the foreground pixel to the background pixel is greater than a parameter of a specified size. | Large natural patches, wildlife habitats, forest reserves, etc. |
Islet | No foreground patches are connected, and the area is less than the minimum threshold of the core area. | Isolated, fragmented small natural patches that are not connected to each other and usually include small urban green spaces within built areas. |
Perforation | The hole inside the central area, with the background forming the outer edge of the foreground. | The construction land in the core area of the ecological space does not have ecological benefits. |
Edge | Outer edge of the foreground. | The transition between the core area and the construction land, and has the edge effect. |
Loop | At least two points are connected to the same core area. | The ecological corridor connected to the same core area is small in scale and low in connection with the surrounding natural patches. |
Bridge | There are at least two points connected to different core regions. | The pocketed ecological land connecting the core areas is a corridor in the regional green infrastructure, which promotes the flow of energy and the formation of networks within the region. |
Branch | Only one side is connected to the edge zone, bridge zone, or loop zone. | Ecological patches that are only connected to a section of the core area have poor landscape connectivity. |
Ecological Resistance Factors | Classifications 1 | Resistance Values | Weights | |
---|---|---|---|---|
DEM (m) | <76.78 | 1 | 0.2 | |
76.78–216.04 | 10 | |||
126.04–401.72 | 20 | |||
401.72–660.35 | 30 | |||
>660.35 | 50 | |||
Slope (°) | <5.40 | 1 | 0.2 | |
5.4–12.23 | 10 | |||
12.23–19.34 | 20 | |||
19.34–27.01 | 30 | |||
>27.01 | 50 | |||
NDVI | >0.78 | 1 | 0.2 | |
0.66–0.78 | 10 | |||
0.52–0.66 | 20 | |||
0.37–0.52 | 30 | |||
<0.37 | 50 | |||
Land-cover type | Forests | 1 | 0.2 | |
Grassland and shrubland | 10 | |||
Water body | 20 | |||
Cropland and bare areas | 30 | |||
Impervious surfaces | 50 | |||
Nighttime light data 2 | DMSP/OLS <534.95 | VIIRS <4.18 | -- 1 | 0.2 |
534.95–1662.17 | 4.18–15.20 | 10 | ||
1662.17–3222.84 | 15.20–30.91 | 20 | ||
3222.84–4826.29 | 30.91–79.83 | 30 | ||
>4826.29 | >79.83 | 50 |
Year | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
Landscape Types | FG/Data (%) 1 | FG/Data (%) | FG/Data (%) | FG/Data (%) | FG/Data (%) |
Core | 75.07/64.63 | 74.42/62.27 | 74.10/60.40 | 73.79/59.03 | 73.58/58.13 |
Islet | 0.74/0.64 | 1.10/0.92 | 1.42/1.16 | 1.70/1.36 | 1.78/1.41 |
Perforation | 7.05/6.07 | 6.84/5.73 | 6.74/5.50 | 6.57/5.25 | 6.37/5.03 |
Edge | 8.99/7.74 | 8.91/7.45 | 8.79/7.17 | 8.87/7.10 | 9.09/7.18 |
Loop | 0.93/0.80 | 0.97/0.81 | 1.05/0.85 | 1.10/0.88 | 1.11/0.88 |
Bridge | 6.13/5.28 | 6.47/5.41 | 6.44/5.25 | 6.41/5.13 | 6.44/5.09 |
Branch | 1.10/0.95 | 1.29/1.08 | 1.45/1.18 | 1.56/1.25 | 1.64/1.29 |
Background | --/13.90 | --/16.32 | --/18.49 | --/20.01 | --/21.00 |
Total | 100/100 | 100/100 | 100/100 | 100/100 | 100/100 |
Year | Active Corridors | Inactive Corridors | Total Length/km | ||
---|---|---|---|---|---|
Count | Length/km | Count | Length/km | ||
2000 | 57 | 1763.60 | 10 | 421.77 | 2185.37 |
2005 | 54 | 1456.50 | 13 | 805.63 | 2262.13 |
2010 | 53 | 1248.59 | 14 | 892.80 | 2141.39 |
2015 | 54 | 1458.22 | 13 | 803.78 | 2262.00 |
2020 | 55 | 1526.65 | 12 | 708.35 | 2235.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, S.; Yu, T.; Ji, P.; Xiao, Y.; Li, X.; Zhang, N.; Liu, Z. Analysis on Ecological Network Pattern Changes in the Pearl River Delta Forest Urban Agglomeration from 2000 to 2020. Remote Sens. 2024, 16, 3800. https://doi.org/10.3390/rs16203800
Wei S, Yu T, Ji P, Xiao Y, Li X, Zhang N, Liu Z. Analysis on Ecological Network Pattern Changes in the Pearl River Delta Forest Urban Agglomeration from 2000 to 2020. Remote Sensing. 2024; 16(20):3800. https://doi.org/10.3390/rs16203800
Chicago/Turabian StyleWei, Shengrong, Tao Yu, Ping Ji, Yundan Xiao, Xiaoyao Li, Naijing Zhang, and Zhenwei Liu. 2024. "Analysis on Ecological Network Pattern Changes in the Pearl River Delta Forest Urban Agglomeration from 2000 to 2020" Remote Sensing 16, no. 20: 3800. https://doi.org/10.3390/rs16203800
APA StyleWei, S., Yu, T., Ji, P., Xiao, Y., Li, X., Zhang, N., & Liu, Z. (2024). Analysis on Ecological Network Pattern Changes in the Pearl River Delta Forest Urban Agglomeration from 2000 to 2020. Remote Sensing, 16(20), 3800. https://doi.org/10.3390/rs16203800