Mapping Land Management Regimes in Western Ukraine Using Optical and SAR Data
Abstract
:1. Introduction
- Analyze whether object-based mapping improves the separation of land management regimes
- Assess whether the combination of multispectral and SAR data enhances the classification of land management regimes.
- Map land management regimes and analyze them across gradients of soil marginality, elevation, and distance to markets.
2. Material
2.1. Study Area
2.2. Data Set and Preprocessing
3. Methods
3.1. Random Forest Classifier
3.2. Superpixel Contour Segmentation
3.3. Hierarchical Classification Framework
3.4. Accuracy Assessment
3.5. Exploring Spatial Patterns in Land Management Regimes
4. Results
5. Discussion
6. Conclusions
Acknowledgments
- Author ContributionsJan Stefanski wrote the manuscript and was responsible for research design, data preparation and analysis. All authors contributed in an extensive field campaign for data collection and supported by general discussions about the study. Oleh Chaskovskyy provided some of the data and gave relevant information about the study site. Tobias Kuemmerle and BjörnWaske, who is the PI of the DFG project, provided significant input to research design and contributed in editing and reviewing the manuscript.
Conflicts of Interest
References
- Foley, J.; Defries, R.; Asner, G.; Barford, C.; Bonan, G.; Carpenter, S.; Chapin, F.; Coe, M.; Daily, G.; Gibbs, H.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. Land change science special feature: The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar]
- Goldewijk, K.K. Estimating global land use change over the past 300 years: The HYDE database. Glob. Biogeochem. Cycles 2001, 15, 417–433. [Google Scholar]
- Food and Agriculture Organization (FAO), Global Forest Resources Assessment 2005 Progress towards Sustainable Forest Management; FAO: Rome, Italy, 2006; Volume 147.
- Siebert, S.; Portmann, F.T.; Döll, P. Global patterns of cropland use intensity. Remote Sens 2010, 2, 1625–1643. [Google Scholar]
- Ellis, E.; Kaplan, J.; Fuller, D.; Vavrus, S.; Goldewijk, K.; Verburg, P. Used planet: A global history. Proc. Natl. Acad. Sci. USA 2013, 110, 7978–7985. [Google Scholar]
- Erb, K.H.; Haberl, H.; Jepsen, M.R.; Kuemmerle, T.; Lindner, M.; Müller, D.; Verburg, P.H.; Reenberg, A. A conceptual framework for analysing and measuring land-use intensity. Curr. Opin. Environ. Sustain 2013, 5, 464–470. [Google Scholar]
- Matson, P.A.; Parton, W.J.; Power, A.G.; Swift, M.J. Agricultural intensification and ecosystem properties. Science 1997, 277, 504–509. [Google Scholar]
- Rounsevell, M.D.; Pedroli, B.; Erb, K.H.; Gramberger, M.; Busck, A.G.; Haberl, H.; Kristensen, S.; Kuemmerle, T.; Lavorel, S.; Lindner, M.; et al. Challenges for land system science. Land Use Policy 2012, 29, 899–910. [Google Scholar]
- Brooks, T.M.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Rylands, A.B.; Konstant, W.R.; Flick, P.; Pilgrim, J.; Oldfield, S.; Magin, G.; et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol 2002, 16, 909–923. [Google Scholar]
- Lambin, E.F.; Meyfroidt, P. Inaugural article: Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar]
- Kuemmerle, T.; Erb, K.; Meyfroidt, P.; Müller, D.; Verburg, P.H.; Estel, S.; Haberl, H.; Hostert, P.; Jepsen, M.R.; Kastner, T.; et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain 2013, 5, 484–493. [Google Scholar]
- Fritz, S.; See, L.; You, L.; Justice, C.; Becker-Reshef, I.; Bydekerke, L.; Cumani, R.; Defourny, P.; Erb, K.; Foley, J.; et al. The need for improved maps of global cropland. EOS, Trans. Am. Geophys. Union 2013, 94, 31–32. [Google Scholar]
- Rudorff, B.F.T.; de Aguiar, D.A.; da Silva, W.F.; Sugawara, L.M.; Adami, M.; Moreira, M.A. Studies on the rapid expansion of sugarcane for ethanol production in São Paulo State (Brazil) using Landsat data. Remote Sens 2010, 2, 1057–1076. [Google Scholar]
- Skriver, H.; Mattia, F.; Satalino, G.; Balenzano, A.; Pauwels, V.; Verhoest, N.; Davidson, M. Crop classification using short-revisit multitemporal SAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2011, 4, 423–431. [Google Scholar]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens 2013, 5, 949–981. [Google Scholar]
- Sieber, A.; Kuemmerle, T.; Prishchepov, A.V.; Wendland, K.J.; Baumann, M.; Radeloff, V.C.; Baskin, L.M.; Hostert, P. Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sens. Environ 2013, 133, 38–51. [Google Scholar]
- Li, P.; Feng, Z.; Jiang, L.; Liao, C.; Zhang, J. A review of Swidden agriculture in Southeast Asia. Remote Sens 2014, 6, 1654–1683. [Google Scholar]
- Alcantara, C.; Kuemmerle, T.; Prishchepov, A.V.; Radeloff, V.C. Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens. Environ 2012, 124, 334–347. [Google Scholar]
- Souza, C., Jr.; Siqueira, J.; Sales, M.; Fonseca, A.; Ribeiro, J.; Numata, I.; Cochrane, M.; Barber, C.; Roberts, D.; Barlow, J. Ten-year Landsat classification of deforestation and forest degradation in the Brazilian Amazon. Remote Sens 2013, 5, 5493–5513. [Google Scholar]
- Turner, B.L.; Doolittle, W.E. The concept and measure of agricultural intensity. Prof. Geogr 1978, 30, 297–301. [Google Scholar]
- Kleijn, D.; Kohler, F.; Baldi, A.; Batary, P.; Concepcion, E.; Clough, Y.; Diaz, M.; Gabriel, D.; Holzschuh, A.; Knop, E.; et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. R. Soc. B: Biol. Sci 2009, 276, 903–909. [Google Scholar]
- Zaks, D.P.M.; Kucharik, C.J. Data and monitoring needs for a more ecological agriculture. Environ. Res. Lett 2011, 6, 014017. [Google Scholar]
- Verburg, P.H.; Neumann, K.; Nol, L. Challenges in using land use and land cover data for global change studies. Glob. Chang. Biol 2011, 17, 974–989. [Google Scholar]
- Ellis, E.C.; Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ 2008, 6, 439–447. [Google Scholar]
- Václavík, T.; Lautenbach, S.; Kuemmerle, T.; Seppelt, R. Mapping global land system archetypes. Glob. Environ. Chang 2013, 23, 1637–1647. [Google Scholar]
- Asselen, S.; Verburg, P.H. A Land System representation for global assessments and land-use modeling. Glob. Chang. Biol 2012, 18, 3125–3148. [Google Scholar]
- Hett, C.; Castella, J.C.; Heinimann, A.; Messerli, P.; Pfund, J.L. A landscape mosaics approach for characterizing swidden systems from a REDD+ perspective. Appl. Geogr 2012, 32, 608–618. [Google Scholar]
- Wästfelt, A.; Tegenu, T.; Nielsen, M.M.; Malmberg, B. Qualitative satellite image analysis: Mapping spatial distribution of farming types in Ethiopia. Appl. Geogr 2012, 32, 465–476. [Google Scholar]
- Killeen, T.J.; Anna, G.; Miki, C.; Lisette, C.; Veronica, C.; Liliana, S.; Belem, Q.; Marc, K.S. Total historical land-use change in Eastern Bolivia: Who, where, when, and how much? Ecol. Soc 2008, 13, 1–27. [Google Scholar]
- Rodriguez, C.; Wiegand, K. Evaluating the trade-off between machinery efficiency and loss of biodiversity-friendly habitats in arable landscapes: The role of field size. Agric. Ecosyst. Environ 2009, 129, 361–366. [Google Scholar]
- Ferguson, M.; Badhwar, G.; Chhikara, R.; Pitts, D. Field size distributions for selected agricultural crops in the United States and Canada. Remote Sens. Environ 1986, 19, 25–45. [Google Scholar]
- Aplin, P.; Atkinson, P.M. Sub-pixel land cover mapping for per-field classification. Int. J. Remote Sens 2001, 22, 2853–2858. [Google Scholar]
- Lloyd, C.D.; Berberoglu, S.; Curran, P.J.; Atkinson, P.M. A comparison of texture measures for the per-field classification of Mediterranean land cover. Int. J. Remote Sens 2004, 25, 3943–3965. [Google Scholar]
- Ozdogan, M.; Woodcock, C.E. Resolution dependent errors in remote sensing of cultivated areas. Remote Sens. Environ 2006, 103, 203–217. [Google Scholar]
- Kuemmerle, T.; Hostert, P.; St-Louis, V.; Radeloff, V.C. Using image texture to map farmland field size: A case study in Eastern Europe. J. Land Use Sci 2009, 4, 85–107. [Google Scholar]
- Yan, L.; Roy, D.P. Automated crop field extraction from multi-temporal Web Enabled Landsat Data. Remote Sens. Environ 2014, 144, 42–64. [Google Scholar]
- Cleve, C.; Kelly, M.; Kearns, F.R.; Moritz, M. Classification of the wildland–urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography. Comput. Environ. Urban Syst 2008, 32, 317–326. [Google Scholar]
- Moskal, L.M.; Styers, D.M.; Halabisky, M. Monitoring urban tree cover using object-based image analysis and public domain remotely sensed data. Remote Sens 2011, 3, 2243–2262. [Google Scholar]
- Whiteside, T.G.; Boggs, G.S.; Maier, S.W. Comparing object-based and pixel-based classifications for mapping savannas. Int. J. Appl. Earth Obs. Geoinf 2011, 13, 884–893. [Google Scholar]
- Stefanski, J.; Mack, B.; Waske, B. Optimization of object-based image analysis with Random Forests for land cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2013, 6, 2492–2504. [Google Scholar]
- Dai, X.; Khorram, S. A hierarchical methodology framework for multisource data fusion in vegetation classification. Int. J. Remote Sens 1998, 19, 3697–3701. [Google Scholar]
- Jones, D.A.; Hansen, A.J.; Bly, K.; Doherty, K.; Verschuyl, J.P.; Paugh, J.I.; Carle, R.; Story, S.J. Monitoring land use and cover around parks: A conceptual approach. Remote Sens. Environ 2009, 113, 1346–1356. [Google Scholar]
- Sulla-Menashe, D.; Friedl, M.A.; Krankina, O.N.; Baccini, A.; Woodcock, C.E.; Sibley, A.; Sun, G.; Kharuk, V.; Elsakov, V. Hierarchical mapping of Northern Eurasian land cover using MODIS data. Remote Sens. Environ 2011, 115, 392–403. [Google Scholar]
- Li, Y.; Gong, J.; Wang, D.; An, L.; Li, R. Sloping farmland identification using hierarchical classification in the Xi-He region of China. Int. J. Remote Sens 2013, 34, 545–562. [Google Scholar]
- Cohen, W.; Goward, S. Landsat’s role in ecological applications of remote sensing. Bioscience 2004, 54, 535–545. [Google Scholar]
- Loveland, T.R.; Cochrane, M.A.; Henebry, G.M. Landsat still contributing to environmental research. Trends Ecol. Evol 2008, 23, 182–183. [Google Scholar]
- Griffiths, P.; Müller, D.; Kuemmerle, T.; Hostert, P. Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environ. Res. Lett 2013, 8, 045024. [Google Scholar]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Land use/land cover change analysis using object-based classification approach in Munessa-Shashemene Landscape of the Ethiopian Highlands. Remote Sens 2013, 5, 2411–2435. [Google Scholar]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free access to Landsat imagery. Science 2008, 320. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Radeloff, V.C.; Dubinin, M.; Alcantara, C. The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ 2012, 126, 195–209. [Google Scholar]
- Kovalskyy, V.; Roy, D. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30 m Landsat data product generation. Remote Sens. Environ 2013, 130, 280–293. [Google Scholar]
- Waske, B.; Braun, M. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS J. Photogramm. Remote Sens 2009, 64, 450–457. [Google Scholar]
- Bargiel, D.; Herrmann, S. Multi-temporal land-cover classification of agricultural areas in two european regions with high resolution spotlight TerraSAR-X data. Remote Sens 2011, 3, 859–877. [Google Scholar]
- Cable, J.; Kovacs, J.; Shang, J.; Jiao, X. Multi-temporal polarimetric RADARSAT-2 for land cover monitoring in Northeastern Ontario, Canada. Remote Sens 2014, 6, 2372–2392. [Google Scholar]
- Pohl, C.; van Genderen, J.L. Review article multisensor image fusion in remote sensing: Concepts, methods and applications. Int. J. Remote Sens 1998, 19, 823–854. [Google Scholar]
- Waske, B.; Benediktsson, J. Fusion of support vector machines for classification of multisensor data. IEEE Trans. Geosci. Remote Sens 2007, 45, 3858–3866. [Google Scholar]
- Kuplich, T.; Freitas, C.D.C.; Soares, J. The study of ERS-1 SAR and Landsat TM synergism for land use classification. Int. J. Remote Sens 2000, 21, 2101–2111. [Google Scholar]
- Shupe, S.M.; Marsh, S.E. Cover- and density-based vegetation classifications of the Sonoran Desert using Landsat TM and ERS-1 SAR imagery. Remote Sens. Environ 2004, 93, 131–149. [Google Scholar]
- Waske, B.; van der Linden, S. Classifying multilevel imagery from SAR and optical sensors by decision fusion. IEEE Trans. Geosci. Remote Sens 2008, 46, 1457–1466. [Google Scholar]
- Gong, B.; Im, J.; Mountrakis, G. An artificial immune network approach to multi-sensor land use/land cover classification. Remote Sens. Environ 2011, 115, 600–614. [Google Scholar]
- Griffiths, P.; Hostert, P.; Gruebner, O.; van der Linden, S. Mapping megacity growth with multi-sensor data. Remote Sens. Environ 2010, 114, 426–439. [Google Scholar]
- Kuemmerle, T.; Radeloff, V.C.; Perzanowski, K.; Hostert, P. Cross-border comparison of land cover and landscape pattern in Eastern Europe using a hybrid classification technique. Remote Sens. Environ 2006, 103, 449–464. [Google Scholar]
- Müller, D.; Kuemmerle, T.; Rusu, M.; Griffiths, P. Lost in transition: Determinants of post-socialist cropland abandonment in Romania. J. Land Use Sci 2009, 4, 109–129. [Google Scholar]
- Baumann, M.; Kuemmerle, T.; Elbakidze, M.; Ozdogan, M.; Radeloff, V.C.; Keuler, N.S.; Prishchepov, A.V.; Kruhlov, I.; Hostert, P. Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy 2011, 28, 552–562. [Google Scholar]
- Ioffe, G.; Nefedova, T.; de Beurs, K. Land abandonment in Russia. Eurasian Geogr. Econ 2012, 53, 527–549. [Google Scholar]
- United Nations Environment Programme (UNEP), One Planet Many People: Atlas of Our Changing Environment; Division of Early Warning and Assessment (DEWA), UNEP: Nairobi, Kenya, 2005; p. 320.
- Kuemmerle, T.; Olofsson, P.; Chaskovskyy, O.; Baumann, M.; Ostapowicz, K.; Woodcock, C.E.; Houghton, R.A.; Hostert, P.; Keeton, W.S.; Radeloff, V.C. Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine. Glob. Chang. Biol 2011, 17, 1335–1349. [Google Scholar]
- Sabates-Wheeler, R. Consolidation initiatives after land reform: Responses to multiple dimensions of land fragmentation in Eastern European agriculture. J. Int. Dev 2002, 14, 1005–1018. [Google Scholar]
- National Oceanic and Atmospheric Administration (NOAA). NCDC (National Climate Data Center). 2011. Available online: http://www.ncdc.noaa.gov/ (accessed on 5 June 2014).
- State Statistics Committee of Ukraine. All-Ukrainian Population Census 1979–2001. 2001. Available online: http://www.ukrcensus.gov.ua/eng/ (accessed on 5 June 2014).
- United States Geological Survey (USGS). Landsat Processing Details. 2013. Available online: http://landsat.usgs.gov/Landsat_Processing_Details.php (accessed on 5 June 2014).
- EUROSTAT. LUCAS 2009 (Land Use/Cover Area Frame Survey)—Instructions for Surveyors. 2009. Available online: http://epp.eurostat.ec.europa.eu/portal/page/portal/lucas/documents/LUCAS2009_C1-Instructions_Revised20130925.pdf (accessed on 5 June 2014).
- Breiman, L. Random Forests. Mach. Learn 2001, 45, 5–32. [Google Scholar]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recogn. Lett 2006, 27, 294–300. [Google Scholar]
- Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ 2011, 115, 2564–2577. [Google Scholar]
- Rodriguez-Galiano, V.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.; Jeganathan, C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ 2012, 121, 93–107. [Google Scholar]
- Zhu, Z.; Woodcock, C.E.; Rogan, J.; Kellndorfer, J. Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens. Environ 2012, 117, 72–82. [Google Scholar]
- Mester, R.; Conrad, C.; Guevara, A. Multichannel Segmentation Using Contour Relaxation: Fast Super-Pixels and Temporal Propagation. Proceedings of the 17th Scandinavian Conference on Image Analysis (SCIA’11), Ystad, Sweden, 23–27 May 2011; Springer-Verlag: Berlin/Heidelberg, Germany, 2011; pp. 250–261. [Google Scholar]
- Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification (Technical Report); Department of Computer Science, National Taiwan University: Taipei, Taiwan, 2003. [Google Scholar]
- Bruzzone, L.; Carlin, L. A multilevel context-based system for classification of very high spatial resolution images. IEEE Trans. Geosci. Remote Sens 2006, 44, 2587–2600. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ 2002, 80, 185–201. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ 2013, 129, 122–131. [Google Scholar]
- Foody, G.M. Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogramm. Eng. Remote Sens 2004, 70, 627–633. [Google Scholar]
- IUSS Working Group WRB, World Reference Base for Soil Resources 2006; World Soil Resources Reports No. 103; Food and Agriculture Organization (FAO): Rome, Italy, 2006.
- Food and Agriculture Organization (FAO), Global Agriculture Towards 2050; FAO: Rome, Italy, 2009.
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. From the cover: Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A.; Hart, J.P. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, 1–8. [Google Scholar]
- Rodriguez-Galiano, V.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J. An assessment of the effectiveness of a Random Forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens 2012, 67, 93–104. [Google Scholar]
- Ricardo, D. On the Principles of Political Economy and Taxation; John Murray: London, UK, 1821. [Google Scholar]
- Von Thünen, J.H. Von Thünen’s Isolated State: An English Edition of: 1826 der Isolierte Staat. Edited with an Introduction by Peter Hall; Pergamon Press: Oxford, UK, 1966. [Google Scholar]
- Larsson, S.; Nilsson, C. A remote sensing methodology to assess the costs of preparing abandoned farmland for energy crop cultivation in northern Sweden. Biomass Bioenergy 2005, 28, 1–6. [Google Scholar]
- Bergen, K.M.; Dronova, I. Observing succession on aspen-dominated landscapes using a remote sensing-ecosystem approach. Landsc. Ecol 2007, 22, 1395–1410. [Google Scholar]
- Stehman, S.V. Model-assisted estimation as a unifying framework for estimating the area of land cover and land-cover change from remote sensing. Remote Sens. Environ 2009, 113, 2455–2462. [Google Scholar]
- McIver, D.; Friedl, M. Using prior probabilities in decision-tree classification of remotely sensed data. Remote Sens. Environ 2002, 81, 253–261. [Google Scholar]
Categories | Classes | Description |
---|---|---|
Agriculture | Large-scale cropland | Potentially intensive use; large fields (100 ha) indicating a high degree of mechanization and other capital-related inputs (e.g., pesticides, fertilizer) |
Agriculture | Small-scale cropland | Kitchen gardens, subsistence agriculture; small field size indicates high labor intensity, but low intensity in terms of capital related inputs |
Agriculture | Pasture | Grassland used for grazing of cattle, sheep, or goats |
Agriculture | Fallow | Areas without sign of management, including perennial vegetation (often willow, alder or birch shrubs), all indicating potentially abandoned agricultural land |
Forestry | Forest | Mixed forest or forests dominated by coniferous or deciduous forests species |
Urban | Urban | Dense settlements or cities |
LS Classes | Pixel-Based | Object-Based | Hierarchical | |||
---|---|---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | |
LSC | 51.6 | 70.8 | 85.4 | 89.0 | 85.1 | 89.7 |
SSC | 73.2 | 43.3 | 92.5 | 56.3 | 91.8 | 71.4 |
Pasture | 56.5 | 55.0 | 74.3 | 56.6 | 62.5 | 65.9 |
Fallow | 67.3 | 69.4 | 58.0 | 81.9 | 74.0 | 79.2 |
Forest | 96.8 | 95.1 | 92.3 | 96.1 | 94.1 | 96.2 |
Urban | 54.5 | 76.9 | 29.5 | 77.8 | 63.2 | 80.0 |
OA | 67.4% | 78.3% | 83.4% |
Classified | Reference | ||||||
---|---|---|---|---|---|---|---|
LSC | SSC | Pas. | Fal. | For. | Urb. | Tot. | |
LSC | 34 | 4 | 5 | 3 | 1 | 1 | 48 |
SSC | 23 | 29 | 5 | 6 | 4 | 67 | |
Pasture | 7 | 2 | 22 | 9 | 40 | ||
Fallow | 23 | 4 | 5 | 75 | 1 | 108 | |
Forest | 1 | 1 | 2 | 77 | 81 | ||
Urban | 1 | 2 | 10 | 13 | |||
Total | 89 | 41 | 38 | 95 | 79 | 15 | 357 |
Classified | Reference | ||||||
---|---|---|---|---|---|---|---|
LSC | SSC | Pas. | Fal. | For. | Urb. | Tot. | |
LSC | 73 | 4 | 3 | 2 | 82 | ||
SSC | 9 | 36 | 2 | 11 | 6 | 64 | |
Pasture | 2 | 2 | 30 | 19 | 53 | ||
Fallow | 5 | 2 | 5 | 59 | 1 | 72 | |
Forest | 1 | 2 | 74 | 77 | |||
Urban | 1 | 1 | 7 | 9 | |||
Total | 89 | 41 | 38 | 95 | 79 | 15 | 357 |
Classified | Reference | ||||||
---|---|---|---|---|---|---|---|
LSC | SSC | Pas. | Fal. | For. | Urb. | Tot. | |
LSC | 70 | 1 | 2 | 2 | 2 | 1 | 78 |
SSC | 7 | 35 | 2 | 4 | 1 | 49 | |
Pasture | 3 | 27 | 11 | 41 | |||
Fallow | 12 | 6 | 76 | 1 | 1 | 96 | |
Forest | 1 | 2 | 75 | 78 | |||
Urban | 2 | 1 | 12 | 15 | |||
Total | 89 | 41 | 38 | 95 | 79 | 15 | 357 |
Methods | | z | | p | |
---|---|---|---|
Pixel-based | Object-based | 3.41 | <0.001 |
Pixel-based | Hierarchical | 5.18 | <0.001 |
Object-based | Hierarchical | 2.07 | <0.05 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Stefanski, J.; Kuemmerle, T.; Chaskovskyy, O.; Griffiths, P.; Havryluk, V.; Knorn, J.; Korol, N.; Sieber, A.; Waske, B. Mapping Land Management Regimes in Western Ukraine Using Optical and SAR Data. Remote Sens. 2014, 6, 5279-5305. https://doi.org/10.3390/rs6065279
Stefanski J, Kuemmerle T, Chaskovskyy O, Griffiths P, Havryluk V, Knorn J, Korol N, Sieber A, Waske B. Mapping Land Management Regimes in Western Ukraine Using Optical and SAR Data. Remote Sensing. 2014; 6(6):5279-5305. https://doi.org/10.3390/rs6065279
Chicago/Turabian StyleStefanski, Jan, Tobias Kuemmerle, Oleh Chaskovskyy, Patrick Griffiths, Vassiliy Havryluk, Jan Knorn, Nikolas Korol, Anika Sieber, and Björn Waske. 2014. "Mapping Land Management Regimes in Western Ukraine Using Optical and SAR Data" Remote Sensing 6, no. 6: 5279-5305. https://doi.org/10.3390/rs6065279
APA StyleStefanski, J., Kuemmerle, T., Chaskovskyy, O., Griffiths, P., Havryluk, V., Knorn, J., Korol, N., Sieber, A., & Waske, B. (2014). Mapping Land Management Regimes in Western Ukraine Using Optical and SAR Data. Remote Sensing, 6(6), 5279-5305. https://doi.org/10.3390/rs6065279