Assimilation of Two Variables Derived from Hyperspectral Data into the DSSAT-CERES Model for Grain Yield and Quality Estimation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
Exp. | Growing Season | Cultivar | Sowing Date | N Application(kg N∙ha−1) |
---|---|---|---|---|
1 | 2009–2010 | Nongda195, Jingdong13, Jing9428 | 25 September, 5 October and 15 October 2009 | 135 |
2 | 2012–2013 | Nongda211, Zhongmai175, Zhongyou206, Jing9843, | 28 September 2012 | 0, 105, 210, 420 |
3 | 2012–2013 | Jingdong22 | 27 September 2012 | 60, 136, 210, 280 |
2.2. Data Acquisition
2.2.1. Fundamental Data Set
2.2.2. Canopy Hyperspectral Reflectance Data
2.2.3. Plant Measurement
Phenology | Date | Zadoks | Canopy Spectral | LAIm | CNAm | Yield | GPC |
---|---|---|---|---|---|---|---|
Experiment 1 | 2010 | ||||||
Stem elongation | 23 April | 31 | 9 | 9 | 9 | - | - |
Booting | 6 May | 47 | 9 | 9 | 9 | - | - |
Anthesis | 19 May | 65 | 9 | 9 | 9 | - | - |
Milk development | 1 June | 75 | 9 | 9 | 9 | - | - |
Harvest | 20 June | - | - | - | 9 | 9 | |
Experiment 2 | 2013 | ||||||
Stem elongation | 25 April | 31 | 16 | 16 | 16 | - | - |
Booting | 10 May | 47 | 16 | 16 | 16 | - | - |
Anthesis | 20 May | 65 | 16 | 16 | 16 | - | - |
Milk development | 31 May | 75 | 16 | 16 | 16 | - | - |
Harvest | 20 June | - | - | - | 8 | 8 | |
Experiment 3 | 2013 | ||||||
Stem elongation | 25 April | 31 | 8 | 8 | 8 | - | - |
Booting | 10 May | 47 | 8 | 8 | 8 | - | - |
Anthesis | 20 May | 65 | 8 | 8 | 8 | - | - |
Milk development | 29 May | 75 | 8 | 8 | 8 | - | - |
Harvest | 20 June | - | - | - | 8 | 8 |
2.3. Data Assimilation Methods
2.3.1. DSSAT-CERES Model Description
2.3.2. LAI and CNA Estimation from Spectral Indices
Spectral Indices | Formula | Developer(s) |
---|---|---|
Normalized difference VI# (NDVI) | (R890 − R670)/(R890 + R670) | Pearson et al. [37] |
Modified Simple Ratio (MSR) | (R800/R670 − 1)/sqrt(R800/R670 + 1) | Chen [38] |
Optimized soil-adjusted VI (OSAVI) | 1.16(R800 − R670)/(R800 + R670 + 0.16) | Rondeaux et al. [39] |
Wide dynamic range VI (WDRVI) | (α*R800 − R670)/(α*R800 + R670) α = 0.1 | Gitelson et al. [40] |
Red-edge chlorophyll index (CIred-edge) | R750/R720 − 1 | Gitelson et al. [41] |
Greenness index (GI) | R554/R677 | Zarco-Tejada et al. [42] |
Optimal VI (VIopt) | (1 + 0.45)(R8002 + 1)/(R670 + 0.45) | Reyniers et al. [43] |
Ratio of MCARI to MTVI2 (MCARI/MTVI2) | MCARI/MTVI2 MCARI: (R700 − R670 − 0.2(R700 − R500))(R700/R670) MTVI2: 1.5(1.2(R800 − R550) − 2.5(R670 − R550)) | Eitel et al. [44] |
MERIS terrestrial chlorophyll index (MTCI) | (R750 − R710)/(R710 − R680) | Dash et al. [45] |
Standardized LAI Determining Index (sLAIDI) | S(R1050 − R1250)/(R1050 + R1250), S = 5 | Delalieux et al. [46] |
Enhanced VI (EVI) | 2.5(R800 − R660)/(1 + R800 + 2.4R660) | Jiang et al. [47] |
Normalized difference red edge index (NDRE) | (R790 − R720)/(R790 + R720) | Fitzgerald et al. [48] |
Normalized difference chlorophyll index (NDCI) | (R708 − R665)/(R708 + R665) | Mishra et al. [49] |
Double-peak canopy nitrogen index (DCNII) | (R750 − R700)/(R700 − R670)/(R750 − R670 + 0.09) | Jin et al. [50] |
Three band water index (TBWI) | (R973 − R1720)/R1447 | Jin et al. [51] |
2.3.3. Data Assimilation Strategy
- (1)
- The initial value (position) and velocity of the particles were determined. For SVLAI, four crop genotype parameters (PHINT, LAIS, SLAS and LSPHS) sensitive to LAI and three management parameters (plant density, irrigation amount, and fertilization amount) were adjusted [54] (Table 4); For SVCNA, four crop genotype parameters (P1D, PHINT, RDGS and SLPF) sensitive to CNA and the same three management parameters were adjusted (Table 4). For SVLAI + CNA, all the above crop genotype and management parameters were considered. The velocity in each dimension was set to ~10% of the dynamic range of the variable [53]. It is important to point out that the parameters sensitive to CNA were set to default values (Table 4) in the SVLAI method, and vice versa (i.e., the parameters sensitive to LAI were set to default values (Table 4) in the SVCNA method).
- (2)
- The DSSAT executable file “dscsm045.exe” under the installation directory, integrated with the required data, was run in Matlab (version 2007, MathWorks, US), and the simulated LAI and CNA were output.
- (3)
- The relationships between the spectral indices and LAI or CNA were analyzed, and the best regression model was selected to estimate LAI and CNA, respectively.
- (4)
- The cost function was constructed according to the variables simulated by the DSSAT-CERES model and those retrieved by the spectral index. The fitness value from the cost function determined whether the optimization algorithm reached the optimum input parameters. When one state variable was used in an assimilation scheme (SVLAI or SVCNA), the cost function was based on only one variable (i.e., LAI or CNA) (Figure 1). When two state variables were used in an assimilation scheme (SVLAI + CNA), the cost function was based on both LAI and CNA.
- (5)
- The program searched for the pid and pgd at each iteration.
- (6)
- The positions and velocities of the particles were updated on the basis of pid and pgd. The c1 and c2 values were set as 2, and ξ and η were random values between 0 and 1 [53].
- (7)
- If the iteration (100 generations in this study) was not reached, the updated positions were replaced and the second step was conducted. If the iteration was reached, LAI, CNA, yield and GPC were output.
2.4. Statistical Analysis
Variables | Default | Ranges |
---|---|---|
Initial data | ||
Plant density (PPOP, m−3) | 350 | 300–400 |
Irrigation amount (IRVAL, mm) | 150 | 90–240 |
Fertilization amount (FAMN, kg N∙ha−1) | 200 | 0–400 |
Sensitive to LAI | ||
Phyllochron interval parameter (PHINT) | 100 | 90–120 |
Area of standard first leaf (LA1S) | 2.0 | 1.5–3.0 |
Specific leaf area (SLAS) | 300 | 200–400 |
Final leaf senescence starts (LSPHS) | 5.0 | 4.0–5.7 |
Sensitive to CNA | ||
Photoperiod parameter (P1D) | 50 | 30–70 |
Phyllochron interval parameter (PHINT) | 100 | 90–120 |
Root depth growth rate (RDGS) | 3.0 | 2.5–3.5 |
Photosynthesis factor (SLPF) | 1 | 0.8–1.0 |
3. Results
3.1. LAI and CNA Estimation from Spectral Indices
Spectral Indices | LAI Model | R2 | RMSE | CNA Model | R2 | RMSE (kg N∙ha−1) |
---|---|---|---|---|---|---|
NDVI | y = 0.1321e3.5882x | 0.800** | 0.627 | y = 3.1877e4.3454x | 0.699** | 41.80 |
MSR | y = 0.89x0.9799 | 0.829** | 0.598 | y = 33.85x1.132 | 0.659** | 44.52 |
OSAVI | y = 0.2658e3.5008x | 0.826** | 0.673 | y = 317.72x2.2247 | 0.701** | 39.97 |
WDRVI | y = 2.2473e1.5338x | 0.821** | 0.651 | y = 98.704e1.7295x | 0.622** | 47.62 |
CIred-edge | y = 2.1067x0.8293 | 0.774** | 0.642 | y = 90.798x1.0544 | 0.745** | 43.04 |
GI | y = 0.9191x1.8479 | 0.823** | 0.758 | y = 39.585x1.8903 | 0.513** | 53.36 |
VIopt | y = 4.7134x−12.983 | 0.798** | 0.700 | y = 0.0239x6.9962 | 0.528** | 45.35 |
MCARI/MTVI2 | y = 0.0971x−1.087 | 0.707** | 0.700 | y = 406.86e−23.41x | 0.762** | 42.73 |
MTCI | y = 0.6336x1.0374 | 0.700** | 0.686 | y = 18.218x1.383 | 0.742** | 44.03 |
sLAIDI | y = 0.9837e1.5881x | 0.720** | 0.802 | y = 37.49e1.8599x | 0.588** | 37.13 |
EVI | y = 6.7588x1.3672 | 0.812** | 0.761 | y = 362.97x1.6175 | 0.678** | 43.38 |
NDRE | y = 0.5172e3.5672x | 0.766** | 0.695 | y = 473.26x1.6525 | 0.794** | 37.75 |
NDCI | y = 0.3319e4.5273x | 0.783** | 0.633 | y = 455.99x1.7035 | 0.478** | 47.12 |
DCNII | y = 0.5628e0.047x | 0.488** | 0.879 | y = 6.6829x−77.668 | 0.733** | 52.43 |
TBWI | y = 1.5433x0.5171 | 0.778** | 0.672 | y = 64.326x0.589 | 0.601** | 44.14 |
3.2. LAI and CNA Simulation Using Data Assimilation
Method | Exp. | n | Regression Equation | R2 | RMSE | Regression Equation | R2 | RMSE(kg N∙ha−1) |
---|---|---|---|---|---|---|---|---|
SVLAI | 1 | 36 | y = 1.016x − 0.184 | 0.782 | 0.452 | y = 1.511x − 13 | 0.830 | 39.31 |
2 | 64 | y = 1.19x − 0.447 | 0.857 | 0.535 | y = 1.231x − 29.95 | 0.793 | 32.14 | |
3 | 32 | y = 0.948x − 0.088 | 0.637 | 0.586 | y = 0.887x + 15.62 | 0.806 | 18.09 | |
All | 132 | y = 1.134x − 0.396 | 0.809 | 0.527 | y = 1.084x − 1.673 | 0.715 | 31.65 | |
SVCNA | 1 | 36 | y = 0.662x + 0.11 | 0.619 | 1.158 | y =1.406x − 31.33 | 0.902 | 24.32 |
2 | 64 | y = 0.897x − 0.436 | 0.806 | 1.001 | y = 1.249x − 15.93 | 0.823 | 31.71 | |
3 | 32 | y = 0.682x − 0.283 | 0.565 | 1.579 | y = 1.038x + 9.23 | 0.806 | 21.45 | |
All | 132 | y = 0.809x − 0.331 | 0.695 | 1.207 | y = 1.247x − 14.54 | 0.833 | 27.58 | |
SVLAI + CNA | 1 | 36 | y = 0.975x − 0.117 | 0.771 | 0.472 | y = 1.586x − 39.04 | 0.866 | 31.20 |
2 | 64 | y = 1.135x − 0.243 | 0.873 | 0.496 | y = 1.325x − 22.67 | 0.816 | 33.52 | |
3 | 32 | y = 1.009x − 0.147 | 0.670 | 0.515 | y = 1.005x + 10.26 | 0.788 | 20.86 | |
All | 132 | y = 1.107x − 0.287 | 0.828 | 0.494 | y = 1.304x − 18.22 | 0.808 | 30.26 |
3.3. Grain Yield and GPC Estimation
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yu, Z.W. Crop Cultivation; China Agriculture Press: Beijing, China, 2003. [Google Scholar]
- Li, C.; Wang, J.; Wang, Q.; Wang, D.; Song, X.; Wang, Y.; Huang, W. Estimating wheat grain protein content using multi-temporal remote sensing data based on partial least squares regression. J. Integr. Agr. 2012, 11, 1445–1452. [Google Scholar] [CrossRef]
- Reynolds, M.; Foulkes, J.; Furbank, R.; Griffiths, S.; King, J.; Murchie, E.; Parry, M.; Slafer, G. Achieving yield gains in wheat. Plant Cell Environ. 2012, 35, 1799–1823. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.Y.; Wang, J.J.; Bao, Y.S.; Huang, W.J.; Ma, Z.H.; Zhao, C.J. Predicting winter wheat condition, grain yield and protein content using multi-temporal EnviSat-ASAR and Landsat TM satellite images. Int. J. Remote Sens. 2006, 27, 737–753. [Google Scholar] [CrossRef]
- Thorp, K.R.; White, J.W.; Porter, C.H.; Hoogenboom, G.; Nearing, G.S.; French, A.N. Methodology to evaluate the performance of simulation models for alternative compiler and operating system configurations. Comput. Electron. Agr. 2012, 81, 62–71. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, X.; Braswell, B.; Linder, E.; Baret, F.; Moore, B., III. Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sens. Environ. 2005, 99, 357–371. [Google Scholar] [CrossRef]
- Fang, H.; Liang, S.; Hoogenboom, G.; Teasdale, J.; Cavigelli, M. Corn-yield estimation through assimilation of remotely sensed data into the CSM-CERES-Maize model. Int. J. Remote Sens. 2008, 29, 3011–3032. [Google Scholar] [CrossRef]
- Guerif, M.; Duke, C.L. Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation. Agr. Ecosyst. Environ. 2000, 81, 57–69. [Google Scholar] [CrossRef]
- Maas, S.J. Use of remotely-sensed information in agricultural crop growth models. Ecol. Model. 1988, 41, 247–268. [Google Scholar] [CrossRef]
- Maas, S.J. Using satellite data to improve model estimates of crop yield. Agron. J. 1988, 80, 655–662. [Google Scholar] [CrossRef]
- Guerif, M.; Duke, C. Calibration of the SUCROS emergence and early growth module for sugar beet using optical remote sensing data assimilation. Eur. J. Agron. 1998, 9, 127–136. [Google Scholar] [CrossRef]
- Jongschaap, R.E. Run-time calibration of simulation models by integrating remote sensing estimates of leaf area index and canopy nitrogen. Eur. J. Agron. 2006, 24, 316–324. [Google Scholar] [CrossRef]
- De Wit, A.; Van Diepen, C.A. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts. Agr. Forest Meteorol. 2007, 146, 38–56. [Google Scholar] [CrossRef]
- Fang, H.; Liang, S.; Hoogenboom, G. Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation. Int. J. Remote Sens. 2011, 32, 1039–1065. [Google Scholar] [CrossRef]
- Morel, J.; Begue, A.; Todoroff, P.; Martine, J.; Lebourgeois, V.; Petit, M. Coupling a sugarcane crop model with the remotely sensed time series of fIPAR to optimise the yield estimation. Eur. J. Agron. 2014, 61, 60–68. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q.; Zhou, J.; Zhang, G.; Chen, C.; Wang, J. Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions. Ecol. Model. 2014, 291, 15–27. [Google Scholar] [CrossRef]
- Dong, Y.; Zhao, C.; Yang, G.; Chen, L.; Wang, J.; Feng, H. Integrating a very fast simulated annealing optimization algorithm for crop leaf area index variational assimilation. Math. Comput. Model. 2013, 58, 877–885. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.; Li, W.; Cao, W.; Tian, Y. Integrating remotely sensed leaf area index and leaf nitrogen accumulation with RiceGrow model based on particle swarm optimization algorithm for rice grain yield assessment. J. Appl. Remote Sens. 2014, 8, 083674. [Google Scholar] [CrossRef]
- Thorp, K.R.; Wang, G.; West, A.L.; Moran, M.S.; Bronson, K.F.; White, J.W.; Mon, J. Estimating crop biophysical properties from remote sensing data by inverting linked radiative transfer and ecophysiological models. Remote Sens. Environ. 2012, 124, 224–233. [Google Scholar] [CrossRef]
- Ma, H.Y. Winter Wheat Yield Estimation Based on Assimilating Leaf Area Index and Evapotranspiration into SWAP Crop Model. Ph.D. Thesis, China Agricultural University, Beijing, China, 2013. [Google Scholar]
- China Meteorological Data Sharing Service System. Available online: http://cdc.cma.gov.cn (accessed on 12 September 2015).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; Volume 300, p. d05109. [Google Scholar]
- Wang, J.H.; Zhao, C.J.; Huang, W.J. Basis and Application of Agriculture Quantitative Remote Sensing; Science Press: Beijing, China, 2008. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Breda, N.J. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J. Exp. Bot. 2003, 54, 2403–2417. [Google Scholar] [CrossRef] [PubMed]
- Schepers, J.S.; Francis, D.D.; Thompson, M.T. Simultaneous determination of total C, total N, and 15N on soil and plant material. Commun. Soil Sci. Plan. Anal. 1989, 20, 949–959. [Google Scholar] [CrossRef]
- Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Hlavinka, P.; Moriondo, M.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Rumbaur, C.; Takáč, J. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. Eur. J. Agron. 2011, 35, 103–114. [Google Scholar] [CrossRef]
- Thorp, K.R.; DeJonge, K.C.; Kaleita, A.L.; Batchelor, W.D.; Paz, J.O. Methodology for the use of DSSAT models for precision agriculture decision support. Comput. Electron. Agrc. 2008, 64, 276–285. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Ritchie, J.T. Wheat phasic development. In Modeling Plant and Soil Systems; Hanks, J., Ritchie, J.T., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 1991; pp. 31–54. [Google Scholar]
- Nearing, G.S.; Crow, W.T.; Thorp, K.R.; Moran, M.S.; Reichle, R.H.; Gupta, H.V. Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment. Water Resour. Res. 2012, 48, W05525. [Google Scholar] [CrossRef]
- Ritchie, J.T.; Godwin, D. CERES Wheat 2.0. Available online: http://nowlin.css.msu.edu/indexritchie.html (accessed on 12 September 2015).
- Thorp, K.R.; Hunsaker, D.J.; French, A.N.; White, J.W.; Clarke, T.R.; Pinter, P.J., Jr. Evaluation of the CSM-CROPSIM-CERES-Wheat model as a tool for crop water management. Trans. ASABE 2010, 53, 87–102. [Google Scholar] [CrossRef]
- DeJonge, K.C.; Ascough, J.C.; Ahmadi, M.; Andales, A.A.; Arabi, M. Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments. Ecol. Model. 2012, 231, 113–125. [Google Scholar] [CrossRef]
- Liu, H.L.; Yang, J.Y.; Drury, C.A.; Reynolds, W.D.; Tan, C.S.; Bai, Y.L.; He, P.; Jin, J.; Hoogenboom, G. Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling in fields under long-term continuous maize production. Nutr. Cycl. Agroecosys. 2011, 89, 313–328. [Google Scholar] [CrossRef]
- Asseng, S.; Bar-Tal, A.; Bowden, J.W.; Keating, B.A.; Van Herwaarden, A.; Palta, J.A.; Huth, N.I.; Probert, M.E. Simulation of grain protein content with APSIM-Nwheat. Eur. J. Agron. 2002, 16, 25–42. [Google Scholar] [CrossRef]
- Pearson, R.L.; Miller, L.D. Remote mapping of standing crop biomass for estimation of the productivity of the short grass prairie. In Proceedings of 8th International Symposium on Remote Sensing of the Environment, Michigan, USA, 2–6 October 1972; pp. 1355–1379.
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Vina, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; De Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Reyniers, M.; Walvoort, D.J.; De Baardemaaker, J. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat. Int. J. Remote Sens. 2006, 27, 4159–4179. [Google Scholar] [CrossRef]
- Eitel, J.U.H.; Long, D.S.; Gessler, P.E.; Smith, A.M.S. Using in-situ measurements to evaluate the new RapidEye™ satellite series for prediction of wheat nitrogen status. Int. J. Remote Sens. 2007, 28, 4183–4190. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. Evaluation of the MERIS terrestrial chlorophyll index (MTCI). Adv. Space Res. 2007, 39, 100–104. [Google Scholar] [CrossRef]
- Delalieux, S.; Somers, B.; Hereijgers, S.; Verstraeten, W.W.; Keulemans, W.; Coppin, P. A near-infrared narrow-waveband ratio to determine Leaf Area Index in orchards. Remote Sens. Environ. 2008, 112, 3762–3772. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Rodriguez, D.; O Leary, G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—The canopy chlorophyll content index (CCCI). Field Crop. Res. 2010, 116, 318–324. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Jin, X.; Xu, X.; Song, X.; Li, Z.; Wang, J.; Guo, W. Estimation of leaf water content in winter wheat using grey relational analysis-partial least squares modeling with hyperspectral data. Agron. J. 2013, 105, 1385–1392. [Google Scholar] [CrossRef]
- Jin, X.; Li, Z.; Feng, H.; Xu, X.; Yang, G. Newly combined spectral indices to improve estimation of total leaf chlorophyll content in cotton. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2014, 7, 4589–4600. [Google Scholar] [CrossRef]
- Eberhart, R.C.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 19–21 September 2006; pp. 39–43.
- Eberhart, R.C.; Shi, Y.H. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001 IEEE Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001.
- Li, Z.H.; Jin, X.L.; Liu, H.L.; Xu, X.G.; Wang, J.H.; Li, C.J. Global sensitivity analysis of wheat grain yield and quality and the related process variables from the DSSAT-CERES model based on the extended Fourier Amplitude Sensitivity Test method. Field Crop. Res. 2015. under review. [Google Scholar]
- Vincini, M.; Frazzi, E.; D’Alessio, P. Angular dependence of maize and sugar beet VIs from directional Compact High Resolution Imaging Spectrometer/Project for On-Board Autonomy (CHRIS/Proba) data. In Proceedings of 4th ESA CHRIS PROBA Workshop, Frascati, Italy, 19–21 September 2006.
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Jin, X.; Diao, W.; Xiao, C.; Wang, F.; Chen, B.; Wang, K.; Li, S. Estimation of Wheat Agronomic Parameters using New Spectral Indices. PLoS ONE 2013, 8, e72736. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Yao, X.; Zhu, Y.; Tian, Y.C.; Cao, W.X. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Eur. J. Agron. 2008, 28, 394–404. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Lu, L.; Fang, F. Parameter sensitivity analysis of crop growth models based on the extended Fourier Amplitude Sensitivity Test method. Environ. Modell. Softw. 2013, 48, 171–182. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wang, J.; Xu, X.; Zhao, C.; Jin, X.; Yang, G.; Feng, H. Assimilation of Two Variables Derived from Hyperspectral Data into the DSSAT-CERES Model for Grain Yield and Quality Estimation. Remote Sens. 2015, 7, 12400-12418. https://doi.org/10.3390/rs70912400
Li Z, Wang J, Xu X, Zhao C, Jin X, Yang G, Feng H. Assimilation of Two Variables Derived from Hyperspectral Data into the DSSAT-CERES Model for Grain Yield and Quality Estimation. Remote Sensing. 2015; 7(9):12400-12418. https://doi.org/10.3390/rs70912400
Chicago/Turabian StyleLi, Zhenhai, Jihua Wang, Xingang Xu, Chunjiang Zhao, Xiuliang Jin, Guijun Yang, and Haikuan Feng. 2015. "Assimilation of Two Variables Derived from Hyperspectral Data into the DSSAT-CERES Model for Grain Yield and Quality Estimation" Remote Sensing 7, no. 9: 12400-12418. https://doi.org/10.3390/rs70912400