Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series
Abstract
:1. Introduction
- Gain knowledge about the scattering mechanisms of reed belts during the monitoring period (August 2014 to May 2015) and their exploitation for the phenological monitoring of reeds
- The application of an automatic algorithm for classification of reed areas with recommendations for the best suitable classification input parameters and the most effective acquisition periods for a performant classification.
2. Study Area
3. Available Data
3.1. Dual-Polarimetric (HH, VV) TerraSAR-X Time Series
3.2. Validation and Training Data
4. Methods
4.1. Introduction to the Theory of Dual Polarimetry and Its Scattering Parameters
4.2. Random Forest Classification
- Single parameter images: every parameter at every date
- Parameter stacks: stack of all kinds of parameters of a date
- Multi-temporal parameter stacks: stack of all kinds of parameters of multiple dates (with different look directions)
- -
- all 19 asc and desc images;
- -
- all 15 desc images;
- -
- all four asc images;
- -
- asc and desc winter images without ice (31 October 2014, 11 November 2014, 14 November 2014, 22 November 2014, 25 November 2014, 12 March 2015, 23 March 2015, 26 March 2015);
- -
- asc winter images without ice (14 November 2014, 25 November 2014, 26 March 2015);
- -
- desc winter images without ice (31 October 2014, 11 November 2014, 22 November 2014, 12 March 2015, 23 March 2015);
- -
- two timely matching asc and desc images in November (14 November 2014 and 22 November 2014);
- -
- two timely matching asc and desc images in March (26 March 2015 and 23 March 2015).
4.3. Evaluation of the Classification
5. Results and Discussions
5.1. Time Series Analysis of the Validation Areas
5.2. RF Classification: Single Parameter Layer of Every Date
5.3. RF Classification with Parameter Stacks for One Date
5.4. RF Classification with Multi-Temporal Parameter Stacks
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bogenrieder, A. Das Schilfrohr (Phragmites australis (Cav.) Trin). Biol. Unserer Zeit 1990, 20, 221–222. [Google Scholar] [CrossRef]
- Rodewald-Rudescu, L. Die Binnengewässer, Band XXVII, Das Schilfrohr; Stuttgart, Germany, 1974. [Google Scholar]
- Schmieder, K.; Dienst, M.; Ostendorp, W.; Joehnk, K. Effects of water level variations on the dynamics of the reed belts of Lake Constance. Ecohydrol. Hydrobiol. 2004, 4, 469–480. [Google Scholar]
- Heine, I.; Francke, T.; Rogass, C.; Medeiros, P.H.A.; Bronstert, A.; Foerster, S. Monitoring Seasonal Changes in the Water Surface Areas of Reservoirs Using TerraSAR-X time series data in semiarid Northeastern Brazil. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3190–3199. [Google Scholar] [CrossRef]
- Bresciani, M.; Stroppiana, D.; Fila, G.; Montagna, M.; Giardino, C. Monitoring reed vegetation in environmentally sensitive areas in Italy. Ital. J. Remote Sens. 2009, 41, 125–137. [Google Scholar] [CrossRef]
- Schuster, C.; Schmidt, T.; Conrad, C.; Kleinschmit, B.; Förster, M. Grassland habitat mapping by intra-annual time series analysis—Comparison of RapidEye and TerraSAR-X satellite data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 25–34. [Google Scholar] [CrossRef]
- Csaplovics, E.; Nemeth, E. Airborne Optical Imaging in Support of Habitat Ecological Monitoring of the Austrian Reed Belt of Lake Neusiedl. In Proceedings of the GISScience RSGIS4HQ, Vienna, Austria, 24–25 September 2014; pp. 163–167.
- Lantz, N.J.; Wang, J. Object-based classification of Worldview-2 imagery for mapping invasive common reed, Phragmites australis. Can. J. Remote Sens. 2014, 39, 328–340. [Google Scholar] [CrossRef]
- Heine, I.; Stüve, P.; Kleinschmit, B.; Itzerott, S. Reconstruction of lake level changes of groundwater-fed lakes in Northeastern Germany using RapidEye time series. Water 2015, 7, 4175–4199. [Google Scholar] [CrossRef]
- Castree, N.; Demeritt, D.; Liverman, D.; Rhoads, B. A Companion to Environmental Geography; John Wiley & Sons: Chichester, UK, 2009. [Google Scholar]
- Lee, J.; Pottier, E. Polarimetric Radar Imaging—From Basics to Applications, 1st ed.; CRC Press: New York, NY, USA, 2009. [Google Scholar]
- Zhao, L.; Yang, J.; Li, P.; Zhang, L. Seasonal inundation monitoring and vegetation pattern mapping of the Erguna floodplain by means of a RADARSAT-2 fully polarimetric time series. Remote Sens. Environ. 2014, 152, 426–440. [Google Scholar] [CrossRef]
- Smith, L.C. Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol. Process. 1997, 11, 1427–1439. [Google Scholar] [CrossRef]
- White, L.; Brisco, B.; Dabboor, M.; Schmitt, A.; Pratt, A. A collection of SAR methodologies for monitoring wetlands. Remote Sens. 2015, 7, 7615–7645. [Google Scholar] [CrossRef]
- Betbeder, J.; Rapinel, S.; Corpetti, T.; Pottier, E.; Corgne, S.; Hubert-Moy, L. Multitemporal classification of TerraSAR-X data for wetland vegetation mapping. J. Appl. Remote Sens. 2014, 8, 083648. [Google Scholar] [CrossRef]
- Schmitt, A.; Brisco, B. Wetland monitoring using the curvelet-based change detection method on polarimetric SAR imagery. Water 2013, 5, 1036–1051. [Google Scholar] [CrossRef]
- Corcoran, J.; Knight, J.; Gallant, A. Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in Northern Minnesota. Remote Sens. 2013, 5, 3212–3238. [Google Scholar] [CrossRef]
- Van Beijma, S.; Comber, A.; Lamb, A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 2014, 149, 118–129. [Google Scholar] [CrossRef]
- Yajima, Y.; Sato, R.; Yamada, H.; Boerner, W. Polsar image analysis of wetlands using modified four component scattering decomposition. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1667–1673. [Google Scholar] [CrossRef]
- Voormansik, K.; Jagdhuber, T.; Olesk, A.; Hajnsek, I.; Papathanassiou, K.P. Towards a detection of grassland cutting practices with dual polarimetric TerraSAR-X data. Int. J. Remote Sens. 2013, 34, 8081–8103. [Google Scholar] [CrossRef]
- Dusseux, P.; Corpetti, T.; Hubert-Moy, L.; Corgne, S. Combined use of multi-temporal optical and radar satellite images for grassland monitoring. Remote Sens. 2014, 6, 6163–6182. [Google Scholar] [CrossRef]
- Voormansik, K.; Jagdhuber, T.; Zalite, K.; Noorma, M.; Hajnsek, I. Observations of cutting practices in agricultural grasslands using polarimetric SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 1382–1396. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Cloude, S.R.; Ballester-Berman, J.D. Rice phenology monitoring by means of SAR polarimetry at X-band. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2695–2709. [Google Scholar] [CrossRef]
- Lopez-sanchez, J.M.; Ballester-berman, J.D.; Cloude, S.R.; Group, T. Retrieval of Rice Phenology by Means of Sar Polarimetry. In Proceedings of the 5th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, Franscati, Italy, 24–28 January 2011; Volume 2011, pp. 1–8.
- Lopez-Sanchez, J.M.; Ballester-Berman, J.D.; Hajnsek, I. First results of rice monitoring practices in Spain by means of time series of TerraSAR-X dual-pol images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 412–422. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Ballester-Berman, J.D.; Cloude, S.R. Polarimetric response of rice fields at C-Band: Analysis and phenology retrieval. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2977–2993. [Google Scholar] [CrossRef]
- Yonezawa, C.; Negishi, M.; Azuma, K.; Watanabe, M.; Ishitsuka, N.; Ogawa, S.; Saito, G. Growth monitoring and classification of rice fields using multitemporal RADARSAT-2 full-polarimetric data. Int. J. Remote Sens. 2012, 33, 5696–5711. [Google Scholar] [CrossRef]
- Koppe, W.; Gnyp, M.L.; Hütt, C.; Yao, Y.; Miao, Y.; Chen, X.; Bareth, G. Rice monitoring with multi-temporal and dual-polarimetric TerraSAR-X data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 568–576. [Google Scholar] [CrossRef]
- Germer, S.; Kaiser, K.; Mauersberger, R. Sinkende Seespiegel in Nordostdeutschland: Vielzahl Hydrologischer Spezialfälle oder Gruppen von Ähnlichen Seesystemen?; Aktuelle Probleme im Wasserhaushalt von Nordostdeutschland: Trends, Ursachen, Lösungen. Scientific Technical Report 10/10; Deutsches GeoForschungsZentrum: Potsdam, Germany, 2010; pp. 40–48. [Google Scholar]
- Grünewald, U.; Bens, O.; Fischer, H.; Hüttl, R.F.; Kaiser, K.; Hrsg, A.K.; Klimawandel, D.L.; Grünewald, U.; Bens, O.; Fischer, H.; et al. Aktuelle hydrologische Veränderungen von Seen in Nordostdeutschland: Wasserspiegeltrends, ökologische Konsequenzen, Handlungsmöglichkeiten. In Wasserbezogene Anpassungsmaßnahmen an den Landschafts- und Klimawandel; Grünewald, U., Bens, O., Fischer, H., Hüttl, R.F.J., Kaiser, K., Knierim, A., Eds.; Schweizerbart: Stuttgart, Germany, 2012; pp. 148–170. [Google Scholar]
- Kaiser, V.K.; Dreibrodt, J.; Küster, M.; Stüve, P. Die hydrologische Entwicklung des Großen Fürstenseer Sees ( Müritz-Nationalpark ) im letzten Jahrtausend—In Überblick. In Neue Beiträge zum Naturraum und zur Landschaftsgeschichte im Teilgebiet Serrahn des Müritz-NationalparksForschung und Monitoring, 4th ed.; Kobel, J., Küster, M., Schwabe, M., Eds.; Geozon Science Media: Berlin, Germany, 2015; pp. 61–81. [Google Scholar]
- Waterstraat, V.A.; Spiess, H. Zustandsanalyse der Seen in den Einzugsgebieten des Großen Fürstenseer Sees und des Großen Serrahnsees. In Neue Beiträge zum Naturraum und zur Landschaftsgeschichte im Teilgebiet Serrahn des Müritz-NationalparksForschung und Monitoring Band, 4th ed.; Kaiser, K., Kobel, J., Küster, M., Schwabe, M., Eds.; Geozon Science Media: Berlin, Germany, 2015; Chapter 16; pp. 241–258. [Google Scholar]
- Kaiser, K.; Germer, S.; Küster, M.; Lorenz, S.; Stüve, P.; Bens, O. Seespiegelschwankungen in Nordostdeutschland: Beobachtung und Rekonstruktion. Syst. Erde 2012, 2, 62–67. [Google Scholar]
- Graventein, H.; Kaiser, K.; Opp, P.C. Geomorphologische und sedimentologisch- bodenkundliche Befunde zur Paläohydrologie des Großen Fürstenseer Sees im Müritz-Nationalpark (Mecklenburg-Vorpommern). Diplomarbeit; Universität Marburg: Marburg, Germany, 2013. [Google Scholar]
- Van de Weyer, K.; Päzolt, J.; Tigges, P.; Raape, C.; Oldorff, S. Flächenbilanzierungen submerser Pflanzenbestände—Dargestellt am Beispiel des Großen Stechlinsees (Brandenburg) im Zeitraum von 1962–2008. Naturschutz Landschaftspfl. Brand. 2009, 18, 1–6. [Google Scholar]
- Jagdhuber, T. Soil Parameter Retrieval under Vegetation Cover Using SAR Polarimetry; University Potsdam: Potsdam, Germany, 2012. [Google Scholar]
- Lee, J.S.; Ainsworth, T.L.; Kelly, J.; Lopez-Martinez, C. Evaluation and Bias removal of multilook effect on entropy/alpha/anisotropy in polarimetric SAR decomposition. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3039–3052. [Google Scholar] [CrossRef]
- Eineder, M.; Fritz, T.; Mittermayer, J.; Roth, A. TerraSAR-X Ground Segment, Basic Product Specification Document, 2013.
- Charbonneau, F.J.; Brisco, B.; Raney, R.K.; Mcnairn, H.; Liu, C.; Vachon, P.W.; Shang, J.; De Abreu, R.; Champagne, C.; Merzouki, A.; et al. Compact polarimetry overview and applications assessment. Can. J. Remote Sens. 2010, 36, S298–S315. [Google Scholar] [CrossRef]
- Cloude, S.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Cloude, S. The Dual Polarization Entropy/Alpha Decomposition: A PALSAR Case Study. In Proceedings of the 3rd International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy, 22–26 January 2007; pp. 1–6.
- Jagdhuber, T.; Hajnsek, I.; Papathanassiou, K. Polarimetric Soil Moisture Retrieval at Short Wavelength. In Proceedings of the 6th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, Franscati, Italy, 28 January–1 February 2013; p. 35.
- Cloude, S.R. Dual versus quadpol: A new test statistic for radar polarimetry. In Proceedings of the 4th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry —PolInSAR 2009, Frascati, Italy, 26–30 January 2009; pp. 1–8.
- Souyris, J.-C.; Imbo, P.; Fjørtoft, R.; Mingot, S.; Lee, J.-S. Compact Polarimetry Based on Symmetry Properties of Geophysical Media: The pi/4 Mode. Geosci. IEEE Trans. Remote Sens. 2005, 43, 634–646. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Package “randomForest”, 2015.
- Deschamps, B.; McNairn, H.; Shang, J.; Jiao, X. Towards operational radar-only crop type classification: Comparison of a traditional decision tree with a random forest classifier. Can. J. Remote Sens. 2012, 38, 60–68. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Random forest classification of crop type using multi-temporal TerraSAR-X dual-polarimetric data. Remote Sens. Lett. 2014, 5, 157–164. [Google Scholar] [CrossRef]
- Loosvelt, L.; Peters, J.; Skriver, H. Impact of reducing polarimetric SAR input on the uncertainty of crop classifications based on the random forests algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4185–4200. [Google Scholar] [CrossRef]
- Loosvelt, L.; Peters, J.; Skriver, H.; Lievens, H.; Coillie, F.M.B.; Van Bernard De Baets, N.; Verhoest, E.C. Random Forests as a tool for estimating uncertainty at pixel-level in SAR image classification. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 173–184. [Google Scholar] [CrossRef]
- Geisslhofer, M.; Burian, K. Biometrische Untersuchungen im geschlossenene Schilfbestand des Neusiedler Sees. OIKOS 1970, 21, 248–254. [Google Scholar] [CrossRef]
- Mohan, S.; Das, A.; Haldar, D.; Maity, S. Monitoring and retrieval of vegetation parameter using multi-frequency polarimetric SAR data. In Proceedings of the 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, South Korea, 26–30 September 2011; pp. 330–333.
- Zalite, K.; Voormansik, K.; Olesk, A.; Noorma, M.; Reinart, A. Effects of Inundated Vegetation on X-Band HH–VV Backscatter and Phase Difference. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 1402–1406. [Google Scholar]
Date | Mean Incidence Angle (°) | Orbit | NESZ HH (dB) | NESZ VV (dB) | SNR HH (dB) | SNR VV (dB) | Comments |
---|---|---|---|---|---|---|---|
4 August 2014 | 38.5 | Desc | −20.19 | −20.32 | 10.81 | 10.80 | |
7 August 2014 | 42 | Asc | −19.61 | −19.74 | 8.92 | 9.06 | |
15 August 2014 | 38.5 | Desc | −20.66 | −20.93 | 9.95 | 9.82 | |
6 September 2014 | 38.5 | Desc | −20.47 | −20.69 | 9.54 | 9.35 | |
28 September 2014 | 38.5 | Desc | −20.55 | −20.91 | 9.17 | 8.96 | |
9 October 2014 | 38.5 | Desc | −20.41 | −20.40 | 10.58 | 10.21 | |
20 October 2014 | 38.5 | Desc | −19.56 | −18.79 | 8.76 | 7.60 | |
31 October 2014 | 38.5 | Desc | −21.03 | −21.38 | 9.77 | 9.61 | |
11 November 2014 | 38.5 | Desc | −21.01 | −21.34 | 9.80 | 9.52 | |
14 November 2014 | 42 | Asc | −19.40 | −18.36 | 7.91 | 6.88 | |
22 November 2014 | 38.5 | Desc | −21.12 | −21.35 | 9.47 | 9.23 | |
25 November 2014 | 42 | Asc | −20.21 | −20.10 | 8.45 | 8.34 | |
18 February 2015 | 38.5 | Desc | −19.87 | −19.86 | 9.03 | 8.54 | Lake borders covered by ice |
1 March 2015 | 38.5 | Desc | −20.94 | −20.80 | 9.43 | 8.92 | |
12 March 2015 | 38.5 | Desc | −21.01 | −21.36 | 9.61 | 9.53 | |
23 March 2015 | 38.5 | Desc | −20.87 | −21.23 | 9.91 | 9.86 | |
26 March 2015 | 42 | Asc | −19.99 | −19.81 | 8.70 | 8.45 | |
3 April 2015 | 38.5 | Desc | −20.54 | −20.55 | 9.78 | 9.42 | |
6 May 2015 | 38.5 | Desc | −20.43 | −20.85 | 10.48 | 10.53 |
Parameter | Abbreviation | Unit | Range |
---|---|---|---|
Intensity of HH channel | δHH | Decibel (dB) | −25‒5 |
Intensity of VV channel | δVV | dB | −25‒5 |
Intensity of HH plus Intensity of VV | δHH+VV | dB | −25‒5 |
Intensity of HH minus Intensity of VV | δHH-VV | dB | −25‒5 |
Intensity ratio HH/VV | δHH/VV | dB | −25‒5 |
Coherence HHVV amplitude | - | 0‒1 | |
Coherence HHVV phase | radian | −π‒π | |
Intensity XX (pseudo) | dB | −25‒5 | |
Dual-polarimetric mean alpha angle | Degree (°) | −180‒180 | |
Dual-polarimetric dominant alpha angle | Degree (°) | −180‒180 | |
Entropy | - | 0‒1 | |
Anisotropy | - | 0‒1 | |
H-A-combination 1 | - | 0‒1 | |
H-A-combination 2 | - | 0‒1 | |
H-A-combination 3 | - | 0‒1 | |
H-A-combination 4 | - | 0‒1 |
Parameter | Summer | Winter, Early Spring |
---|---|---|
(only desc images) | 2.81 ± 0.09 dB | 4.47 ± 0.67 dB |
−11.92 ± 0.69 dB | −13.60 ± 0.39 dB | |
0.31 ± 0.01 | 0.45 ± 0.03 | |
−1.29 ± 0.15 rad | −2.07 ± 0.10 rad | |
44.4° ± 1.2° | 51.4° ± 1.3° | |
41.7° ± 30° | 55.2° ± 2.5° | |
0.84 ± 0.01 | 0.71 ± 0.04 | |
0.44 ± 0.01 | 0.60 ± 0.04 | |
0.08 ± 0.00 | 0.10 ± 0.00 | |
0.36 ± 0.01 | 0.40 ± 0.01 | |
0.09 ± 0.01 | 0.19 ± 0.03 | |
0.48 ± 0.02 | 0.30 ± 0.04 |
Predicted by Random Forest | ||||||
---|---|---|---|---|---|---|
Coniferous Forest | Deciduous Forest | Meadow | Reed | Water | ||
Actual Class | Coniferous forest | 36,807 | 1527 | 1503 | 2528 | 0 |
Deciduous forest | 1501 | 30,931 | 91 | 2415 | 0 | |
Meadow | 453 | 557 | 10,597 | 64 | 0 | |
Reed | 0 | 181 | 0 | 14,440 | 0 | |
Water | 0 | 0 | 0 | 247 | 32,706 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heine, I.; Jagdhuber, T.; Itzerott, S. Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series. Remote Sens. 2016, 8, 552. https://doi.org/10.3390/rs8070552
Heine I, Jagdhuber T, Itzerott S. Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series. Remote Sensing. 2016; 8(7):552. https://doi.org/10.3390/rs8070552
Chicago/Turabian StyleHeine, Iris, Thomas Jagdhuber, and Sibylle Itzerott. 2016. "Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series" Remote Sensing 8, no. 7: 552. https://doi.org/10.3390/rs8070552