Automatic and Self-Adaptive Stem Reconstruction in Landslide-Affected Forests
Abstract
:1. Introduction
2. Study Data
3. Methods
3.1. Down Sampling
3.2. Terrain Model Derivation
3.3. Stem Location Detection
3.4. Stem Reconstruction
3.4.1. Starting Cylinder
3.4.2. Cylinder Growing
3.5. Post Processing
3.6. Evaluation
4. Results
5. Discussion
5.1. Parameters
5.2. Error Analysis
5.3. Algorithm
5.4. Applicability of TLS in Landslide-Affected Forest
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kankare, V.; Joensuu, M.; Vauhkonen, J.; Holopainen, M.; Tanhuanpää, T.; Vastaranta, M.; Hyyppä, J.; Hyyppä, H.; Alho, P.; Rikala, J. Estimation of the timber quality of Scots pine with terrestrial laser scanning. Forests 2014, 5, 1879–1895. [Google Scholar] [CrossRef]
- Fernandes, P.M. Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann. For. Sci. 2009, 66, 1–9. [Google Scholar] [CrossRef]
- Kim, Y.; Yang, Z.; Cohen, W.B.; Pflugmacher, D.; Lauver, C.L.; Vankat, J.L. Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint LiDAR data. Remote Sens. Environ. 2009, 113, 2499–2510. [Google Scholar] [CrossRef]
- Hollaus, M.; Wagner, W.; Schadauer, K.; Maier, B.; Gabler, K. Growing stock estimation for alpine forests in Austria: A robust LiDAR-based approach. Can. J. Forest Res. 2009, 39, 1387–1400. [Google Scholar] [CrossRef]
- Mücke, W.; Deák, B.; Schroiff, A.; Hollaus, M.; Pfeifer, N. Detection of fallen trees in forested areas using small footprint airborne laser scanning data. Can. J. Remote Sens. 2013, 39, S32–S40. [Google Scholar] [CrossRef]
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands; Springer: Dordrecht, The Netherlands, 2012; pp. 9–41. [Google Scholar]
- Kalvoda, J.; Rosenfeld, C.L. Geomorphological Hazards in High Mountain Areas; Springer: Dordrecht, The Netherlands, 2012; Volume 46. [Google Scholar]
- Alexandrowicz, Z.; Margielewski, W. Impact of mass movements on geo-and biodiversity in the Polish Outer (Flysch) Carpathians. Geomorphology 2010, 123, 290–304. [Google Scholar] [CrossRef]
- Meusburger, K.; Alewell, K.M.C. Soil Erosion in the Alps, Experience Gained from Case Studies (2006–2013); Federal office for the Environment, Environmental Studies: Bern, Switzerland, 2014. [Google Scholar]
- Forbes, K.; Broadhead, J. Forests and landslides: The Role of Trees and Forests in the Prevention of Landslides and Rehabilitation of Landslide-Affected Areas in Asia; Food and Agriculture Organization (FAO) of the United Nations: Bangkok, Thailand, 2013. [Google Scholar]
- Steger, S.; Glade, T.; Hollaus, M.; Pfeiffer, N.; Bogaard, T.; van Beek, R. Quantifying the effect of biomass and its change on landslide activity at regional scale. In Proceedings of the European Geosciences Union (EGU) General Assembly 2015, Vienna, Austria, 12–17 April 2015.
- Kuriakose, S.L.; Van Beek, L.; Van Westen, C. Parameterizing a physically based shallow landslide model in a data poor region. Earth Surf. Process. Landf. 2009, 34, 867–881. [Google Scholar] [CrossRef]
- Schmaltz, E.; Steger, S.; Bell, R.; Glade, T.; van Beek, R.; Bogaard, T.; Wang, D.; Hollaus, M.; Pfeifer, N. Exploring possibilities of including detailed ALS derived biomass information into physically-based slope stability models at regional scale. In Proceedings of the 12th International Symposium on Landslides, Napoli, Italy, 12–19 June 2016; pp. 1807–1815.
- Razak, K.A.; Bucksch, A.; Damen, M.; van Westen, C.; Straatsma, M.; de Jong, S. Characterizing tree growth anomaly induced by landslides using LiDAR. In Landslide Science and Practice; Springer: Heidelberg, Germany, 2013; pp. 235–241. [Google Scholar]
- Thies, M.; Pfeifer, N.; Winterhalder, D.; Gorte, B.G. Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees. Scand. J. For. Res. 2004, 19, 571–581. [Google Scholar] [CrossRef]
- Gray, H.R. The Form and Taper of Forest-Tree Stems; Imperial Forestry Institute, University of Oxford: Oxford, UK, 1956. [Google Scholar]
- Lappi, J. A multivariate, nonparametric stem-curve prediction method. Can. J. For. Res. 2006, 36, 1017–1027. [Google Scholar] [CrossRef]
- Lee, W.K.; Seo, J.H.; Son, Y.M.; Lee, K.H.; von Gadow, K. Modeling stem profiles for Pinus densiflora in Korea. For. Ecol. Manag. 2003, 172, 69–77. [Google Scholar] [CrossRef]
- Repola, J. Biomass equations for Birch in Finland. Silva Fenn. 2008, 42, 605–624. [Google Scholar] [CrossRef]
- Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 2009, 43, 625–647. [Google Scholar] [CrossRef]
- Raumonen, P.; Kaasalainen, M.; Åkerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M.; Disney, M.; Lewis, P. Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens. 2013, 5, 491–520. [Google Scholar] [CrossRef]
- Hackenberg, J.; Morhart, C.; Sheppard, J.; Spiecker, H.; Disney, M. Highly accurate tree models derived from terrestrial laser scan data: A method description. Forests 2014, 5, 1069–1105. [Google Scholar] [CrossRef]
- Chiba, Y. A quantitative analysis of stem form and crown structure: The S-curve and its application. Tree Physiol. 1990, 7, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Guan, F.; et al. Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens. 2016, 115, 63–77. [Google Scholar] [CrossRef]
- Eysn, L.; Pfeifer, N.; Ressl, C.; Hollaus, M.; Grafl, A.; Morsdorf, F. A practical approach for extracting tree models in forest environments based on equirectangular projections of terrestrial laser scans. Remote Sens. 2013, 5, 5424–5448. [Google Scholar] [CrossRef]
- Olofsson, K.; Holmgren, J.; Olsson, H. Tree stem and height measurements using terrestrial laser scanning and the ransac algorithm. Remote Sens. 2014, 6, 4323–4344. [Google Scholar] [CrossRef]
- Pfeifer, N.; Winterhalder, D. Modelling of tree cross sections from terrestrial laser scanning data with free-form curves. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 36, 76–81. [Google Scholar]
- Sun, H.; Wang, G.; Lin, H.; Li, J.; Zhang, H.; Ju, H. Retrieval and accuracy assessment of tree and stand parameters for Chinese fir plantation using terrestrial laser scanning. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1993–1997. [Google Scholar] [CrossRef]
- Kankare, V.; Holopainen, M.; Vastaranta, M.; Puttonen, E.; Yu, X.; Hyyppä, J.; Vaaja, M.; Hyyppä, H.; Alho, P. Individual tree biomass estimation using terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens. 2013, 75, 64–75. [Google Scholar] [CrossRef]
- Liang, X.; Litkey, P.; Hyyppä, J.; Kaartinen, H.; Vastaranta, M.; Holopainen, M. Automatic stem mapping using single-scan terrestrial laser scanning. IEEE Trans. Geosci. Remote Sens. 2012, 50, 661–670. [Google Scholar] [CrossRef]
- Moskal, L.M.; Zheng, G. Retrieving forest inventory variables with terrestrial laser scanning (TLS) in urban heterogeneous forest. Remote Sens. 2011, 4, 1–20. [Google Scholar] [CrossRef]
- Brolly, G.; Kiraly, G. Algorithms for stem mapping by means of terrestrial laser scanning. Acta Silv. Lignaria Hung. 2009, 5, 119–130. [Google Scholar]
- Maas, H.; Bienert, A.; Scheller, S.; Keane, E. Automatic forest inventory parameter determination from terrestrial laser scanner data. Int. J. Remote Sens. 2008, 29, 1579–1593. [Google Scholar] [CrossRef]
- Watt, P.; Donoghue, D. Measuring forest structure with terrestrial laser scanning. Int. J. Remote Sens. 2005, 26, 1437–1446. [Google Scholar] [CrossRef]
- Hopkinson, C.; Chasmer, L.; Young-Pow, C.; Treitz, P. Assessing forest metrics with a ground-based scanning LiDAR. Can. J. For. Res. 2004, 34, 573–583. [Google Scholar] [CrossRef]
- Wezyk, P.; Koziol, K.; Glista, M.; Pierzchalski, M. Terrestrial laser scanning versus traditional forest inventory: First results from the Polish forests. In Proceedings of the ISPRS Workshop on Laser Scanning and SilviLaser, Espoo, Finland, 12–14 September 2007; pp. 12–14.
- Liang, X.; Kankare, V.; Yu, X.; Hyyppä, J.; Holopainen, M. Automated stem curve measurement using terrestrial laser scanning. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1739–1748. [Google Scholar] [CrossRef]
- Koizumi, A.; Hirai, T. Evaluation of the section modulus for tree-stem cross sections of irregular shape. J. Wood Sci. 2006, 52, 213–219. [Google Scholar] [CrossRef]
- Depenthal, C.; Schmitt, G. Monitoring of a landslide in Vorarlberg/Austria. In Proceedings of the 11th International (FIG) Symposium on Deformation Measurements, Santorini (Thera) Island, Greece, 25–28 May 1996; pp. 25–28.
- Puttonen, E.; Lehtomäki, M.; Kaartinen, H.; Zhu, L.; Kukko, A.; Jaakkola, A. Improved sampling for terrestrial and mobile laser scanner point cloud data. Remote Sens. 2013, 5, 1754–1773. [Google Scholar] [CrossRef]
- Kraus, K.; Pfeifer, N. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 1998, 53, 193–203. [Google Scholar] [CrossRef]
- Kankare, V.; Puttonen, E.; Holopainen, M.; Hyyppä, J. The effect of TLS point cloud sampling on tree detection and diameter measurement accuracy. Remote Sens. Lett. 2016, 7, 495–502. [Google Scholar] [CrossRef]
- Wang, D.; Hollaus, M.; Puttonen, E.; Pfeifer, N. Fast and robust stem reconstruction in complex environments using terrestrial laser scanning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B3, 411–417. [Google Scholar] [CrossRef]
- Pfeifer, N.; Mandlburger, G. LiDAR data filtering and DTM generation. In opographic Laser Ranging and Scanning: Principles and Processing; CRC Press: Boca Raton, FL, USA, 2008; pp. 307–334. [Google Scholar]
- Pfeifer, N.; Mandlburger, G.; Otepka, J.; Karel, W. OPALS—A framework for Airborne Laser Scanning data analysis. Comput. Environ. Urban Syst. 2014, 45, 125–136. [Google Scholar] [CrossRef]
- Forsman, P.; Halme, A. 3-D mapping of natural environments with trees by means of mobile perception. IEEE Trans. Robot. 2005, 21, 482–490. [Google Scholar] [CrossRef]
- Ma, L.; Zheng, G.; Eitel, J.U.; Moskal, L.M.; He, W.; Huang, H. Improved salient feature-based approach for automatically separating photosynthetic and nonphotosynthetic components within terrestrial LiDAR point cloud data of forest canopies. IEEE Trans. Geosci. Remote Sens. 2016, 54, 679–696. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD), Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231.
- Al-Sharadqah, A.; Chernov, N. Error analysis for circle fitting algorithms. Electron. J. Stat. 2009, 3, 886–911. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Beder, C.; Förstner, W. Direct solutions for computing cylinders from minimal sets of 3D points. In Proceedings of the European Conference on Computer Vision 2006, Graz, Austria, 7–13 May 2006; Springer: Heidelberg, Germany, 2006; pp. 135–146. [Google Scholar]
- Tao, S.; Wu, F.; Guo, Q.; Wang, Y.; Li, W.; Xue, B.; Hu, X.; Li, P.; Tian, D.; Li, C.; et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories. ISPRS J. Photogramm. Remote Sens. 2015, 110, 66–76. [Google Scholar] [CrossRef]
- Huang, B.K. Computer Simulation Analysis of Biological and Agricultural Systems; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Stängle, S.M.; Weiskittel, A.R.; Dormann, C.F.; Brüchert, F. Measurement and prediction of bark thickness in Picea abies: Assessment of accuracy, precision, and sample size requirements. Can. J. For. Res. 2015, 46, 39–47. [Google Scholar] [CrossRef]
- Plomion, C.; Leprovost, G.; Stokes, A. Wood formation in trees. Plant Physiol. 2001, 127, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Tang, S.; Song, X.; Lei, Y.; Zang, H.; Lou, M.; Zhuang, C. Precise measurement of stem diameter by simulating the path of diameter tape from terrestrial laser scanning data. Remote Sens. 2016, 8, 717. [Google Scholar] [CrossRef]
- Wieser, M.; Hollaus, M.; Mandlburger, G.; Pfeifer, N.; Glira, P. ULS LiDAR supported analyses of laser beam penetration from different ALS systems into vegetation. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, III-3, 233–239. [Google Scholar] [CrossRef]
- Litkey, P.; Liang, X.; Kaartinen, H.; Hyyppä, J.; Kukko, A.; Holopainen, M. Single-scan TLS methods for forest parameter retrieval. In Proceedings of the SilviLaser 2008, Edinburgh, UK, 17–19 September 2008.
- Thies, M.; Spiecker, H. Evaluation and future prospects of terrestrial laser scanning for standardized forest inventories. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, XXXVI part 8/W2, 192–197. [Google Scholar]
- Yao, T.; Yang, X.; Zhao, F.; Wang, Z.; Zhang, Q.; Jupp, D.; Lovell, J.; Culvenor, D.; Newnham, G.; Ni-Meister, W. Measuring forest structure and biomass in New England forest stands using Echidna ground-based LiDAR. Remote Sens. Environ. 2011, 115, 2965–2974. [Google Scholar] [CrossRef]
- Calders, K.; Newnham, G.; Burt, A.; Murphy, S.; Raumonen, P.; Herold, M.; Culvenor, D.; Avitabile, V.; Disney, M.; Armston, J. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol. 2015, 6, 198–208. [Google Scholar] [CrossRef]
Specifications | Riegl VZ-2000 |
---|---|
Max. vertical field of view (°) | 100 |
Max. horizontal field of view (°) | 360 |
Accuracy (mm) at 150 m range | 8 |
Points per second (max) | 396,000 |
Beam divergence (mrad) | 0.3 |
Max. resolution (°) | 0.0015 |
Stem Detection | Stem Reconstruction | |
---|---|---|
True positive | 27 | 25 |
False positive | 0 | 0 |
False negative | 0 | 2 |
Completeness | 100% | 92.6% |
Bias | RMSE | RMSE (%) | |
---|---|---|---|
DBH (cm) | 0.03 | 1.80 | 5.50 |
DBH (TLS coverage >80%, cm) | 0.05 | 1.50 | 4.58 |
Diameter (cm) * | 0.13 | 2.45 | 8.94 |
Location (cm) * | 1.60 | 2.09 | - |
Volume (cm3) | 84.88 | 451.38 | 7.07 |
Study | Environment | Sample Size | Density (Stem/ha) | Scan Mode | Method | Completeness | Level of Automation | DBH Result (RMSE (cm) or R2) |
---|---|---|---|---|---|---|---|---|
Thies, M., et al. [ 59] | steep | 50 | 556 | S, M | Circle fitting | 22% (S) | full | 3.48 (S) |
52% (M) | 3.22 (M) | |||||||
Hopkinson, C., et al.[ 35] | flat | 138 | 661 | M | Circle fitting | 93% | semi | = 0.85 |
1.25 m–1.75 m | ||||||||
Watt, P. et al., [ 34] | flat | 12 | 600 | M(p) | Circle fitting | 100% | semi | = 0.92 |
planned | ||||||||
Wezyk, P., et al. [ 36] | flat | - | - | M | Cylinder fitting | 63%–90% | semi | > 0.946 |
1.28 m–1.32 m | ||||||||
Maas, H., et al. [ 33] | flat | 14–29 | 212–410 | S, M | Circle fitting | 87%–100% | full | 1.48–3.25 |
Yao, T., et al. [ 60] | flat | - | 1017–3281 | S | Angular width | - | full | 7.0–8.0 |
Calders, K., et al. [ 61] | flat | 65 | 317–347 | M | Circle fitting | - | semi | 2.39 |
Olofsson, K., et al. [ 26] | - | - | 358–1042 | S | Circle fitting | 87% | full | 2.0–9.6 |
RANSAC | on average | 14% | ||||||
Moskal, L.M., et al. [ 31] | heterogeneous | 25 | - | S | Cylinder fitting | - | full | 9.2 |
voxel modeling | = 0.91 | |||||||
Liang, X., et al. [ 37] | flat | 28 | - | M | Cylinder fitting | - | full | 0.82 |
robust | 4.2% | |||||||
Brolly, G., et al. [ 32] | flat | 213 | 852 | S | Circle fitting | 81% | full | 4.2–7.0 |
cylinder fitting | ||||||||
Our work | steep landslide | 27 | 554 | M(p) | Cylinder fitting | 93% | full | 1.8 (5.5%) |
RANSAC | = 0.99 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Hollaus, M.; Puttonen, E.; Pfeifer, N. Automatic and Self-Adaptive Stem Reconstruction in Landslide-Affected Forests. Remote Sens. 2016, 8, 974. https://doi.org/10.3390/rs8120974
Wang D, Hollaus M, Puttonen E, Pfeifer N. Automatic and Self-Adaptive Stem Reconstruction in Landslide-Affected Forests. Remote Sensing. 2016; 8(12):974. https://doi.org/10.3390/rs8120974
Chicago/Turabian StyleWang, Di, Markus Hollaus, Eetu Puttonen, and Norbert Pfeifer. 2016. "Automatic and Self-Adaptive Stem Reconstruction in Landslide-Affected Forests" Remote Sensing 8, no. 12: 974. https://doi.org/10.3390/rs8120974
APA StyleWang, D., Hollaus, M., Puttonen, E., & Pfeifer, N. (2016). Automatic and Self-Adaptive Stem Reconstruction in Landslide-Affected Forests. Remote Sensing, 8(12), 974. https://doi.org/10.3390/rs8120974