Real-Time Anomaly Detection Based on a Fast Recursive Kernel RX Algorithm
Abstract
:1. Introduction
2. Methods
2.1. RX and KRX Anomaly Detector
2.1.1. RX Algorithm
2.1.2. Kernel RX Algorithm
2.2. Proposed Real-Time Processing of KRX Detector
2.2.1. Local Causal Sliding Array Window
2.2.2. Local Causal KRX Detector
2.2.3. Local Real-time KRX Detector
Step 1 Obtain from : |
Step 2 Derive by : |
Step 3 Update through : |
3. Description of Hyperspectral Datasets
3.1. Pavia University Dataset
3.2. Pavia Center Dataset
3.3. San Diego Airport Dataset
4. Experimental Results
4.1. Optimum Kernel Parameter on the LRTC-KRXD
4.2. Effects of the Local Causal Sliding Array Window Width on the LRTC-KRXD
4.3. Detection Performance of the LRTC-KRXD
4.4. Computational Analysis of the LRTC-KRXD
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, Q; Lin, J; Yuan, Y. Salient band selection for hyperspectral image classification via manifold ranking. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.I. Hyperspectral Imaging: Techniques for Spectral Detection and Classification; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2003. [Google Scholar]
- Chang, C.I. Hyperspectral Data Processing: Algorithm Design and Analysis; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Reed, I.S.; Yu, X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans. Signal. Process. 1990, 38, 1760–1770. [Google Scholar] [CrossRef]
- Kwon, H.; Nasrabadi, N.M. Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2005, 43, 388–397. [Google Scholar] [CrossRef]
- Carlotto, M.J. A cluster-based approach for detecting man-made objects and changes in imagery. IEEE Trans. Geosci. Remote Sens. 2005, 43, 374–387. [Google Scholar] [CrossRef]
- Bajorski, P. Practical evaluation of max-type detectors for hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 462–469. [Google Scholar] [CrossRef]
- Gurram, P.; Han, T.; Kwon, H. Hyperspectral anomaly detection using sparse kernel-based ensemble learning. Proc. SPIE 2011, 8048, 289–293. [Google Scholar]
- Malpica, J.A.; Rejas, J.G.; Alonso, M.C. A projection pursuit algorithm for anomaly detection in hyperspectral imagery. Pattern Recognit. 2008, 41, 3313–3327. [Google Scholar] [CrossRef]
- Yuan, Y; Ma, D; Wang, Q. Hyperspectral anomaly detection by graph pixel selection. IEEE Trans. Cybern. 2015. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Crawford, M.M.; Tian, J. Anomaly detection for hyperspectral images based on robust locally linear embedding. J. Infrared Millim. Terahertz Waves 2010, 31, 753–762. [Google Scholar] [CrossRef]
- Banerjee, A.; Burlina, P.; Diehl, C. A support vector method for anomaly detection in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2282–2291. [Google Scholar] [CrossRef]
- Schölkopf, B.; Smola, A. Learning with Kernels; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Stellman, C.M.; Hazel, G.G.; Bucholtz, F.; Michalowicz, J.V.; Stocker, A.; Schaaf, W. Real-time hyperspectral detection and cuing. Opt. Eng. 2000, 39, 1928–1935. [Google Scholar] [CrossRef]
- Chen, S.Y.; Wang, Y.; Wu, C.C.; Liu, C.; Chang, C.I. Real-time causal processing of anomaly detection for hyperspectral imagery. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1511–1534. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Y.; Qi, B.; Wang, J. Global and local real-time anomaly detectors for hyperspectral remote sensing imagery. Remote Sens. 2015, 7, 3966–3985. [Google Scholar] [CrossRef]
- Du, Q.; Nekovei, R. Fast real-time onboard processing of hyperspectral imagery for detection and classification. J. Real Time Image Process. 2009, 4, 273–286. [Google Scholar] [CrossRef]
- Jablonski, J.A.; Bihl, T.J.; Bauer, K.W. Principal component reconstruction error for hyperspectral anomaly detection. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1725–1729. [Google Scholar] [CrossRef]
- Lo, E. Partitioned correlation model for hyperspectral anomaly detection. Opt. Eng. 2015. [Google Scholar] [CrossRef]
- Stevenson, B.; O’Connor, R.; Kendall, W.; Stocker, A.; Schaff, W.; Alexa, D.; Salvador, J.; Eismann, M.; Barnard, K.; Kershenstein, J. Design and performance of the Civil Air Patrol ARCHER hyperspectral processing system. Proc. SPIE 2005. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Haavardsholm, T.V.; Kåsen, I.; Skauli, T. Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing. J. Real Time Image Process. 2009, 4, 287–300. [Google Scholar] [CrossRef]
- Molero, J.M.; Garzon, E.M.; Garcia, I.; Quintana-Ortí, E.S.; Plaza, A. Efficient implementation of hyperspectral anomaly detection techniques on GPUs and multicore processors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2256–2266. [Google Scholar] [CrossRef]
- Paz, A.; Plaza, A. GPU implementation of target and anomaly detection algorithms for remotely sensed hyperspectral image analysis. Proc. SPIE 2010. [Google Scholar] [CrossRef]
- Ensafi, E.; Stocker, A.D. An adaptive CFAR algorithm for real-time hyperspectral target detection. Proc. SPIE 2008. [Google Scholar] [CrossRef]
- Acito, N.; Matteoli, S.; Diani, M.; Corsini, G. Complexity-aware algorithm architecture for real-time enhancement of local anomalies in hyperspectral images. J. Real Time Image Process. 2013, 8, 53–86. [Google Scholar] [CrossRef]
- Rossi, A.; Acito, N.; Diani, M.; Corsini, G. RX architectures for real-time anomaly detection in hyperspectral images. J. Real Time Image Process. 2014, 9, 503–517. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, C.H.; Chang, C.I. Anomaly detection using sliding causal windows. In Proceeding of the 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 4600–4603.
- Bernstein, D.S. Matrix Mathematics; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Higham, N.J. Accuracy and Stability of Numerical Algorithms, 2nd ed.; SIAM: Philadelphia, PA, USA, 2002. [Google Scholar]
- Kay, S. Fundamental of Statistical Signal Processing: Estimation Theory; Prentice Hall: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Kailath, T. Linear Systems; Prentice-Hall: Englewood Cliffs, NJ, USA, 1980. [Google Scholar]
- Theiler, J.; Grosklos, G. Problematic projection to the in-sample subspace for a kernelized anomaly detector. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1–5. [Google Scholar] [CrossRef]
Sensor | ROSIS |
---|---|
Image size | 260 × 110 |
Gray range | 0–8000 |
Wavelength | 0.43–0.86 μm |
Spectral resolution | 4 nm |
Spatial resolution | 1.3 m |
Available bands | 103 |
Location | Pavia University |
Sensor | ROSIS |
---|---|
Image size | 115 × 115 |
Gray range | 0–8000 |
Wavelength | 0.43–0.86 μm |
Spectral resolution | 4 nm |
Spatial resolution | 1.3 m |
Available bands | 102 |
Location | Pavia Center |
Sensor | AVIRIS |
---|---|
Image size | 51 × 50 |
Gray range | 0–10000 |
Wavelength | 0.4–1.8 μm |
Spectral resolution | 10 nm |
Spatial resolution | 3.5 m |
Available bands | 126 |
Location | San Diego Airport |
Computing Components | Multiplicative Order | Additive Order | ||
---|---|---|---|---|
LKRXD | LRTC-KRXD | LKRXD | LRTC-KRXD | |
0 | ||||
Hyperspectral Data | Total Computing Time (Seconds) | Speedup | |
---|---|---|---|
LKRXD | LRTC-KRXD | ||
PaviaU dataset | 560.109 | 11.398 | 49.141 |
Pavia Center dataset | 247.324 | 5.030 | 49.170 |
San Diego Airport dataset | 50.267 | 1.039 | 48.380 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Yao, X.; Huang, B. Real-Time Anomaly Detection Based on a Fast Recursive Kernel RX Algorithm. Remote Sens. 2016, 8, 1011. https://doi.org/10.3390/rs8121011
Zhao C, Yao X, Huang B. Real-Time Anomaly Detection Based on a Fast Recursive Kernel RX Algorithm. Remote Sensing. 2016; 8(12):1011. https://doi.org/10.3390/rs8121011
Chicago/Turabian StyleZhao, Chunhui, Xifeng Yao, and Bormin Huang. 2016. "Real-Time Anomaly Detection Based on a Fast Recursive Kernel RX Algorithm" Remote Sensing 8, no. 12: 1011. https://doi.org/10.3390/rs8121011
APA StyleZhao, C., Yao, X., & Huang, B. (2016). Real-Time Anomaly Detection Based on a Fast Recursive Kernel RX Algorithm. Remote Sensing, 8(12), 1011. https://doi.org/10.3390/rs8121011