DInSAR-Based Detection of Land Subsidence and Correlation with Groundwater Depletion in Konya Plain, Turkey
Abstract
:1. Introduction
2. Study Area
2.1. Geographic and Climatic Setting
2.2. Geological and Geomorphological Setting
3. Data and Methods
3.1. SAR Data and DInSAR Processing
3.2. Groundwater Level and Stratigraphic Data
3.3. Meteorological Data
3.4. Landsat Data and Land Cover Maps
3.5. GRACE Water Storage Data
4. Results
4.1. SBAS-DInSAR Deformation Maps and Time-Series
4.2. Land Cover Change Analysis
4.3. Meteorological Analysis
5. Discussion
5.1. Correlation between Land Subsidence and Lithology
5.2. Correlation between Land Subsidence and Groundwater Depletion
5.3. Karst Processes and Land Subsidence
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Şen, O.L.A. Holistic View of Climate Change and Its Impacts in Turkey; IPC (Istanbul Policy Center), Sabanci University: Istanbul, Turkey, 2013. [Google Scholar]
- Ekercin, S.; Sertel, E.; Dadaser-Celik, F.; Durduran, S. Investigating the climate change impacts on the water resources of the Konya Closed Basin Area (Turkey) using satellite remote sensing data. In Causes, Impacts and Solutions to Global Warming; Springer Science Business Media: New York, NY, USA, 2013; pp. 157–168. [Google Scholar]
- Dursun, S.; Onder, S.; Acar, R.; Direk, M.; Mucehver, O. Effect of environmental and socioeconomically change on agricultural production in Konya Region. In Proceedings of the International Conference on Applied Life Sciences, Konya, Turkey, 10–12 September 2012; pp. 19–36.
- August, D.; Geiger, M. Drought in the Mediterranean. Recent developments. In WWF for a Living Planet; WWF Germany: Frankfurt, Germany, 2008; p. 43. [Google Scholar]
- Gokmen, M.; Vekerdy, Z.; Lubczynski, M.W.; Timmermans, J.; Batelaan, O.; Verhoef, W. Assessing groundwater storage changes using remote sensing-based evapotranspiration and precipitation at a large semiarid basin scale. J. Hydrometeorol. 2013, 14, 1733–1753. [Google Scholar] [CrossRef]
- Gokmen, M. Earth Observation for Quantifying Ecohydrological Fluxes and Inter-Relations: A Regional Case—The Konya Closed Basin, Turkey. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2013. [Google Scholar]
- Durduran, S.S. Coastline change assessment on water reservoirs located in the Konya Basin Area, Turkey, using multitemporal Landsat imagery. Environ. Monit. Assess. 2010, 164, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Thakur, J.K.; Srivastava, P.K.; Singh, S.K.; Vekerdy, Z. Ecological monitoring of wetlands in semi-arid region of Konya closed Basin, Turkey. Reg. Environ. Chang. 2012, 12, 133–144. [Google Scholar] [CrossRef]
- Dogan, U.; Yılmaz, M. Natural and induced sinkholes of the Obruk Plateau and Karapınar—Hotamıs Plain, Turkey. J. Asian Earth Sci. 2011, 40, 496–508. [Google Scholar] [CrossRef]
- Ozdemir, A. Investigation of sinkholes spatial distribution using the weights of evidence method and GIS in the vicinity of Karapinar (Konya, Turkey). Geomorphology 2015, 245, 40–50. [Google Scholar] [CrossRef]
- Günay, G.; Çörekçioglu, I.; Eroskay, S.O.; Övül, G. Konya Karapınar Obruks (Sinkholes) of Turkey. In Advances in Research in Karst Media; Springer: Berlin, Germany, 2010; pp. 367–372. [Google Scholar]
- Bayari, C.S.; Pekkan, E.; Ozyurt, N.N. Obruks, as giant collapse dolines caused by hypogenic karstification in central Anatolia, Turkey: Analysis of likely formation processes. Hydrogeol. J. 2009, 17, 327–345. [Google Scholar] [CrossRef]
- Ustun, A.; Tusat, E.; Yalvac, S.; Ozkan, I.; Eren, Y.; Ozdemir, A.; Bildirici, O.; Ustuntas, T.; Kırtıloglu, O.S.; Mesutoglu, M.; et al. Land subsidence in Konya Closed Basin and its spatio-temporal detection by GPS and DInSAR. Environ. Earth Sci. 2015, 73, 6691–6703. [Google Scholar] [CrossRef]
- Ustun, A.; Tusat, E.; Yalvac, S. Preliminary results of land subsidence monitoring project in Konya Closed Basin between 2006–2009 by means of GNSS observations. Nat. Hazards Earth Syst. Sci. 2010, 10, 1151–1157. [Google Scholar] [CrossRef]
- Bürgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Ann. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Ardagna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Massonnet, D.; Briole, P.; Arnaud, A. Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 1995, 375, 567–570. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toulose, France, 21–25 July 2003; pp. 4362–4364.
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Mora, O.; Mallorqui, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Calò, F.; Abdikan, S.; Görüm, T.; Pepe, A.; Kiliç, H.; Şanli, F.B. The space-borne SBAS-DInSAR technique as a supporting tool for sustainable urban policies: The case of Istanbul megacity, Turkey. Remote Sens. 2015, 7, 16519–16536. [Google Scholar] [CrossRef]
- Arangio, S.; Calò, F.; Di Mauro, M.; Bonano, M.; Marsella, M.; Manunta, M. An application of the SBAS-DInSAR technique for the assessment of structural damage in the city of Rome. Struct. Infrastruct. Eng. 2013. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Galve, J.P.; Lucha, P.; Castañeda, C.; Bonachea, J.; Guerrero, J. Integrating geomorphological mapping, trenching, InSAR and GPR for the identification and characterization of sinkholes: A review and application in the mantled evaporite karst of the Ebro Valley (NE Spain). Geomorphology 2011, 134, 144–156. [Google Scholar] [CrossRef] [Green Version]
- Galve, J.P.; Castañeda, C.; Gutiérrez, F.; Herrera, G. Assessing sinkhole activity in the Ebro Valley mantled evaporite karst using advanced DInSAR. Geomorphology 2015, 229, 30–44. [Google Scholar] [CrossRef]
- Atzori, S.; Antonioli, A.; Salvi, S.; Baer, G. InSAR-based modeling and analysis of sinkholes along the Dead Sea Coastline. Geophys. Res. Lett. 2015, 42, 8383–8390. [Google Scholar] [CrossRef]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Castellazzi, P.; Arroyo-Domínguez, N.; Martel, R.; Calderhead, A.I.; Normand, J.C.L.; Gárfias, J.; Rivera, A. Land subsidence in major cities of Central Mexico: InterpretingInSAR-derived land subsidence mapping with hydrogeological data. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 102–111. [Google Scholar] [CrossRef]
- Dehghani, M.; Javad Valadan Zoej, M.; Hooper, A.; Hanssen, R.F.; Entezam, I.; Saatchi, S. Hybrid conventional and Persistent Scatterer SAR interferometry for land subsidence monitoring in the Tehran Basin, Iran. ISPRS J. Photogramm. Remote Sens. 2013, 79, 157–170. [Google Scholar] [CrossRef]
- Boni, R.; Herrera, G.; Meisina, C.; Notti, D.; Béjar-Pizarro, M.; Zucca, F.; González, P.J.; Palanof, M.; Tomás, R.; Fernández, J.; et al. Twenty-year advanced DInSAR analysis of severe land subsidence: The Alto Guadalentín Basin (Spain) case study. Eng. Geol. 2015, 198, 40–52. [Google Scholar] [CrossRef]
- Notti, D.; Mateos, R.M.; Monserrat, O.; Devanthéry, N.; Peinado, T.; Roldán, F.J.; Fernández-Chacón, F.; Galve, J.P.; Lamas, F.; Azañón, J.M. Lithological control of land subsidence induced by groundwater withdrawal in new urban areas (Granada basin, SE Spain). Multiband DInSAR monitoring. Hydrol. Process. 2016, 30, 2317–2331. [Google Scholar] [CrossRef]
- Yang, C.S.; Zhang, Q.; Zhao, C.Y.; Wang, Q.L.; Ji, L.Y. Monitoring land subsidence and fault deformation using the smallbaseline subset InSAR technique: A case study in the Datong Basin, China. J. Geodyn. 2014, 75, 34–40. [Google Scholar] [CrossRef]
- Gokmen, M.; Vekerdy, Z.; Verhoef, A.; Verhoef, W.; Batelaan, O.; Van Der Tol, C. Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions. Remote Sens. Environ. 2012, 121, 261–274. [Google Scholar] [CrossRef]
- Topak, R.; Acar, B. Konya basin agriculture-environment relationships and sustainability. In Proceedings of the 2nd International Symposium on Sustainable Development, Sarajevo, Bosnia Herzegovina, 8–9 June 2010.
- Erol, O. Geomorphological evidence of the recessional phases of the pluvial lakes in the Konya, Tuzgolu and Burdur basins in Anatolia. Ankara Univ. Ann. Geogr. Res. Inst. 1971, 3–4, 13–52. [Google Scholar]
- Kuzucuoglu, C.; Parish, R.; Karabiyikoglu, M. The dune systems of the Konya Plain (Turkey): Their relation to environmental changes in Central Anatolia during the Late Pleistocene and Holocene. Geomorphology 1998, 23, 257–271. [Google Scholar] [CrossRef]
- MTA. 1:500 000 Scaled Geology Maps of Turkey, Konya, Kayseri and Adana Sheets; MTA (Mineral Research & Exploration General Directorate): Ankara, Turkey, 2002. [Google Scholar]
- United Nations Educational, Scientific and Cultural Organization (UNESCO). Glossary and Multilingual Equivalents of 227 Karst Terms; UNESCO: Paris, France, 1972. [Google Scholar]
- Gutiérrez, F.; Parise, M.; De Waele, J.; Jourde, H. A review on natural and human-induced geohazards and impacts in karst. Earth-Sci. Rev. 2014, 138, 61–88. [Google Scholar] [CrossRef]
- Erinc, S. On the Relief Features of blown sand at the karapinar surroundings in the interior Anatolia. Rev. Geogr. Inst. Univ. 1962, 8, 113–130. [Google Scholar]
- Kocyigit, A. The Denizli graben-horst system and the eastern limit of Western Anatolia continental extension: Basin fill, structure, deformational mode, throw amount and episodic evolutionary history SW Turkey. Geodin. Acta 2015, 18, 167–208. [Google Scholar] [CrossRef]
- Emre, O.; Duman, T.Y.; Ozalp, S.; Elmaci, H. 1:250,000 Scale Active Fault Map Series of Turkey. Karapinar Quadrangle; MTA (Mineral Research & Exploration General Directorate): Ankara, Turkey, 2011. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.R.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–381. [Google Scholar] [CrossRef]
- Pepe, A.; Lanari, R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2374–2383. [Google Scholar] [CrossRef]
- Wright, T.J.; Parsons, B.E.; Lu, Z. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31, L01607. [Google Scholar] [CrossRef]
- Pepe, A.; Solaro, G.; Calò, F.; Dema, C. A minimum acceleration approach for the retrieval of multiplatform InSAR deformation time series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3883–3898. [Google Scholar] [CrossRef]
- Del Negro, C.; Currenti, G.; Solaro, G.; Greco, F.; Pepe, A.; Napoli, R.; Pepe, S.; Casu, F.; Sansosti, E. Capturing the fingerprint of Etna volcano activity in gravity and satellite radar data. Sci. Rep. 2013. [Google Scholar] [CrossRef]
- KNMI Climate Explorer. Available online: https://climexp.knmi.nl/getprcpall.cgi?id=someone@somewhere&WMO=17244 (accessed on 18 May 2016).
- Turkish State Meteorological Service. Available online: http://www.mgm.gov.tr/veridegerlendirme/yillik-toplam-yagis-verileri.aspx?m=AKSARAY#sfB (accessed on 18 May 2016).
- Bossard, M.; Feranec, J.; Otahel, J. CORINE Land Cover Technical Guide—Addendum 2000; European Environmental Agency Technical Report No. 40; European Environmental Agency: Copenhagen, Denmark, 2000. [Google Scholar]
- Corine Land Cover Map. Available online: http://land.copernicus.eu/pan-european/corine-land-cover (accessed on 18 May 2016).
- USGS Glovis Archive. Available online: http://glovis.usgs.gov (accessed on 18 May 2016).
- CU GRACE Data Portal. Available online: http://geoid.colorado.edu/grace/dataportal.html (accessed on 18 May 2016).
- Longuevergne, L.; Wilson, C.; Scanlon, B.R.; Crétaux, J.F. GRACE water storage estimates for the Middle East and other regions with significant reservoir and lake storage. Hydrol. Earth Syst. Sci. 2013, 17, 4817–4830. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Chen, J.; Kato, H.; Famiglietti, J.S.; Nigro, J.; Wilson, C.R. Estimating ground water storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J. 2007, 15, 159–166. [Google Scholar] [CrossRef]
- Tayanç, M.; İm, U.; Doğruel, M.; Karaca, M. Climate change in Turkey for the last half century. Clim. Chang. 2009, 94, 483–502. [Google Scholar] [CrossRef]
- Türkeș, M.; Yozgatlıgil, C.; Batmaz, İ.; İyigün, C.; Kartal Koç, E.; Fahmi, F.M.; Aslan, S. Has the climate been changing in Turkey? Regional climate change signals based on a comparative statistical analysis of two consecutive time periods, 1950–1980 and 1981–2010. Clim. Res. 2016, 70, 77–93. [Google Scholar] [CrossRef]
- Türkeş, M.; Erlat, E. Precipitation changes and variability in Turkey linked to the North Atlantic Oscillation during the period 1930–2000. Int. J. Climatol. 2003, 23, 1771–1796. [Google Scholar] [CrossRef]
- Castañeda, C.; Gutiérrez, F.; Manunta, M.; Galve, J.P. DInSAR measurements of ground deformation by sinkholes, mining subsidence, and landslides, Ebro River, Spain. Earth Surf. Process. Landf. 2009, 34, 1562–1574. [Google Scholar] [CrossRef]
- Baer, G.; Schattner, U.; Wachs, D.; Sandwell, D.; Wdowinski, S.; Frydman, S. The lowest place on Earth is subsiding—An InSAR (Interferometric Synthetic Aperture Radar) perspective. Geol. Soc. Am. Bull. 2002, 114, 12–23. [Google Scholar] [CrossRef]
- Nof, R.N.; Baer, G.; Ziv, A.; Raz, E.; Atzori, S.; Salvi, S. Sinkhole precursors along the Dead Sea, Israel, revealed by SAR interferometry. Geology 2013, 41, 1019–1022. [Google Scholar] [CrossRef]
Satellite | Band/Parameters | Final Product | Time Interval | Revisit Time | Spatial Resolution |
---|---|---|---|---|---|
ENVISAT—ASAR | C-band | Ground displacements | 2002–2010 | 35 days | 20 × 4 m2 |
Landsat-5/-8 | Multispectral | Qualitative land cover changes/mNDVI | May 2000; May 2015 | 16 days | 30 m |
GRACE | Gravity field | Groundwater storage | 2002–2010 | 30 days | 350 km |
Shuttle Radar Topography Mission (SRTM) [44] | C-band | DEM 3-arc sec | 2000 | Single mission | 90 m |
Monitoring | Product | Time Interval | Measurement Frequency |
---|---|---|---|
Cores | Stratigraphic data | - | - |
Wells | Groundwater level | 2003–2010 | Monthly |
Meteorological stations | Rainfall, Temperature | 1935–2014; 2002–2010; 1950–2014 | Monthly |
Well/Core ID | Latitude (°) | Longitude (°) | Altitude (m a.s.l.) | Well/Core Depth (m) | Lithological Unit | Compressible Layers Thickness (m) | Groundwater Level Data |
---|---|---|---|---|---|---|---|
181 | 37.620 | 32.751 | 1014 | n/a | alluvial deposits | n/a | Yes |
9434 | 37.770 | 32.450 | 1048 | n/a | alluvial deposits | n/a | Yes |
10472 | 38.078 | 32.644 | 1000 | n/a | alluvial deposits | n/a | Yes |
20826 | 37.787 | 32.995 | 1004 | n/a | alluvial deposits | n/a | Yes |
42778 | 37.948 | 33.841 | 1075 | n/a | alluvial deposits | n/a | Yes |
52267 | 37.486 | 32.911 | 1025 | n/a | alluvial deposits | n/a | Yes |
52268 | 37.552 | 33.185 | 1013 | n/a | alluvial deposits | n/a | Yes |
2889 | 37.694 | 33.254 | 999 | 120 | alluvial deposits | 110 | No |
4566 | 37.769 | 33.540 | 996 | 180 | alluvial deposits | 130 | No |
4685 | 37.672 | 33.381 | 1001 | 150 | alluvial deposits | 40 | No |
35530 | 37.710 | 33.387 | 1006 | 100 | alluvial deposits | 0 | No |
38306 | 37.983 | 33.334 | 1046 | 100 | Limestone/marl | 0 | No |
42289 | 37.691 | 33.400 | 1006 | 80 | alluvial deposits | 0 | No |
43405 | 37.790 | 33.286 | 1062 | 135 | Limestone/marl | 0 | No |
43666 | 37.713 | 33.232 | 1007 | 170 | alluvial deposits | 80 | No |
47768 | 37.801 | 33.433 | 1040 | 120 | Limestone/marl | 0 | No |
47782 | 37.850 | 33.344 | 1070 | 130 | Limestone/marl | 0 | No |
48083 | 37.739 | 33.474 | 1047 | 95 | Limestone/marl | 0 | No |
49703 | 37.752 | 33.248 | 1025 | 140 | alluvial deposits | 80 | No |
51903 | 37.768 | 33.311 | 1055 | 140 | Limestone/marl | 0 | No |
47761 | 37.583 | 33.514 | 1002 | 100 | alluvial deposits | 50 | Yes |
52258 | 37.717 | 33.471 | 1014 | 175 | limestone/marl | 0 | Yes |
Station ID | Location | Latitude (°) | Longitude (°) | Altitude (m a.s.l.) | Measurement Time (Years) | Data |
---|---|---|---|---|---|---|
17902 | Karapinar | 37.7136 | 33.5277 | 997 | 2000–2014 | P-T |
17244 | Konya | 37.8691 | 32.4721 | 1032 | 1935–2014 | P |
1950–2014 | T | |||||
17248 | Ereğli | 37.5265 | 34.0482 | 1044 | 2000–2014 | P-T |
17900 | Çumra | 37.5662 | 32.7932 | 1016 | 2000–2014 | P-T |
17264 | Karaman | 37.1927 | 33.2212 | 1021 | 2000–2014 | P-T |
Simplified Classes | CORINE Classes Description |
---|---|
(1) Artificial surfaces | Urban fabric, industrial, transport and commercial units, mine, dump and construction sites |
(2) Natural Vegetation | Natural grasslands, moors and heathland, Sclerophyllous vegetation, transitional woodland-shrub, inland marshes, peat bogs, salines, intertidal flats, broad-leaved forest, coniferous forest, mixed forest |
(3) Bare rocks/soils | Bare rocks, beaches, dunes, sands, salt marshes |
(4) Water bodies/Wetlands | Water courses, water bodies, coastal lagoons, estuaries, sea and ocean, inland marshes, peat bogs, salt marshes, salines, intertidal flats |
(5) Non-irrigated arable land | Non-irrigated arable land |
(6) Unknown or mixed irrigated/non-irrigated land | Complex cultivation patterns, land principally occupied by agricultural with natural space, vineyards and fruit tree |
(7) Irrigated land | Irrigated land/rice field |
(8) Pastures | Pastures |
Color | Domain | Landsat 5 TM | Landsat 8 | ||
---|---|---|---|---|---|
Band | Wavelength (μm) | Band | Wavelength (μm) | ||
Blue | Blue | 1 | 0.45–0.52 | 2 | 0.45–0.51 |
Green | NIR | 4 | 0.76–0.90 | 5 | 0.85–0.88 |
Red | SWIR | 5 | 1.55–1.75 | 6 | 1.57–1.65 |
Land Cover Classes | Area (km2) | Change (km2) | |
---|---|---|---|
2000 | 2012 | ||
Irrigated land | 3723.4 | 3843.9 | 120.5 |
Unknown or mixed irrigated/non-irrigated land | 509.1 | 441.0 | −68.1 |
Non-irrigated arable land | 1049.4 | 981.0 | −68.4 |
Pastures | 872.1 | 970.1 | 98.0 |
Natural vegetation | 1351.2 | 1227.3 | −123.9 |
Bare soil/Rock | 47.5 | 156.3 | 108.8 |
Artificial surfaces | 400.5 | 407.7 | 7.2 |
Water bodies/Wetland | 149.7 | 75.5 | −74.1 |
Total Area | 8103 | 8103 | - |
Land Cover Classes | Area (km2) | |
---|---|---|
2000 | 2015 | |
Irrigated land | 760 | 1634 |
Non- irrigated land/Natural vegetation/Pasture | 3003 | 1271 |
Rock/Bare soils/Salt | 7538 | 8389 |
Water bodies | 20 | 6 |
Not classified | 59 | 81 |
Total Area | 11,380 | 11,380 |
CLC Category | mNDVI | ||
---|---|---|---|
2000 | 2015 | Variation | |
Natural vegetation | 0.45 | 0.45 | −0.001 |
Bare soilRock | 0.28 | 0.22 | −0.068 |
Pastures | 0.47 | 0.48 | 0.005 |
Already irrigated land | 0.89 | 0.96 | 0.068 |
New irrigated land (2012) | 0.66 | 0.98 | 0.325 |
Non-irrigated arable land | 0.52 | 0.74 | 0.216 |
Artificial surfaces | 0.57 | 0.58 | 0.011 |
Compressible Layer Thickness (m) | Number of Wells | Vertical Deformation Rate (cm/Year) | ||
---|---|---|---|---|
Min | Max | Mean | ||
Obruk plateau | 3 | 0.03 | 0.25 | 0.15 |
<10 | 2 | 0.06 | 0.47 | 0.26 |
50–100 | 2 | 0.30 | 0.56 | 0.41 |
>100 | 2 | 0.43 | 0.49 | 0.46 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caló, F.; Notti, D.; Galve, J.P.; Abdikan, S.; Görüm, T.; Pepe, A.; Balik Şanli, F. DInSAR-Based Detection of Land Subsidence and Correlation with Groundwater Depletion in Konya Plain, Turkey. Remote Sens. 2017, 9, 83. https://doi.org/10.3390/rs9010083
Caló F, Notti D, Galve JP, Abdikan S, Görüm T, Pepe A, Balik Şanli F. DInSAR-Based Detection of Land Subsidence and Correlation with Groundwater Depletion in Konya Plain, Turkey. Remote Sensing. 2017; 9(1):83. https://doi.org/10.3390/rs9010083
Chicago/Turabian StyleCaló, Fabiana, Davide Notti, Jorge Pedro Galve, Saygin Abdikan, Tolga Görüm, Antonio Pepe, and Füsun Balik Şanli. 2017. "DInSAR-Based Detection of Land Subsidence and Correlation with Groundwater Depletion in Konya Plain, Turkey" Remote Sensing 9, no. 1: 83. https://doi.org/10.3390/rs9010083