Multiscale Remote Sensing to Map the Spatial Distribution and Extent of Cropland in the Sudanian Savanna of West Africa
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data and Pre-Processing
2.2.1. Landsat
2.2.2. Reference Data
2.2.3. Moderate Resolution Imaging Spectroradiometer (MODIS)
2.2.4. MODIS Land Cover Product (MCD12Q1)
- Cropland (class 12): “Land cover with temporary crops followed by harvest and bare soil period (e.g., single and multiple cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub land cover type”.
- The Cropland/Natural Vegetation Mosaic (class 14): “Land with a mosaic of croplands, forest, shrublands, and grasslands in which no one component comprises more than 60% of the landscape”.
2.2.5. GlobeLand30
2.2.6. Agricultural Statistics Data
3. Methodology
3.1. Landsat Classification
3.2. Calculation of Fractional Cover Maps
3.3. Accuracy Assessment
3.4. Plausibility Analysis
4. Results
4.1. Classification Accuracy at Local Scale
4.2. Accuracy Assessment at the Regional Scale
4.3. Spatial Distribution of Cropland and Area Assessments
4.4. Impact of Training Samples on Regional Cropland Mapping
4.5. Plausibility Analysis Using Official Census Data
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ruelland, D.; Levavasseur, F.; Tribotté, A. Patterns and dynamics of land-cover changes since the 1960s over three experimental areas in Mali. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S11–S17. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 617. [Google Scholar] [CrossRef] [PubMed]
- Leroux, L.; Jolivot, A.; Bégué, A.; Seen, D. Lo; Zoungrana, B. How Reliable is the {MODIS} Land Cover Product for Crop Mapping {Sub-Saharan} Agricultural Landscapes? Remote Sens. 2014, 6, 8541–8564. [Google Scholar] [CrossRef] [Green Version]
- Vancutsem, C.; Marinho, E.; Kayitakire, F.; See, L.; Fritz, S. Harmonizing and Combining Existing Land Cover/Land Use Datasets for Cropland Area Monitoring at the African Continental Scale. Remote Sens. 2013, 5, 19–41. [Google Scholar] [CrossRef] [Green Version]
- Forkuor, G. Agricultural Land Use Mapping in West Africa Using Multi-sensor Satellite Imagery. Ph.D. Thesis, University of Würzburg, Würzburg, Germany, 2014. Available online: http://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/10868 (accessed on 20 February 2015).
- Thenkabail, P.S.; Hanjra, M.A.; Dheeravath, V.; Gumma, M. A Holistic View of Global Croplands and Their Water Use for Ensuring Global Food Security in the 21st Century through Advanced Remote Sensing and Non-remote Sensing Approaches. Remote Sens. 2010, 2, 211–261. [Google Scholar] [CrossRef] [Green Version]
- Forkuor, G.; Cofie, O. Dynamics of land-use and land-cover change in Freetown, Sierra Leone and its effects on urban and peri-urban agriculture—A remote sensing approach. Int. J. Remote Sens. 2011, 32, 1017–1037. [Google Scholar] [CrossRef]
- Andrew Wardell, A.D.; Reenberg, A.; Tøttrup, C. Historical footprints in contemporary land use systems: forest cover changes in savannah woodlands in the Sudano-Sahelian zone. Glob. Environ. Chang. 2003, 13, 235–254. [Google Scholar] [CrossRef]
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Vintrou, E.; Desbrosse, A.; Bégué, A.; Traoré, S.; Baron, C.; Lo Seen, D. Crop area mapping in West Africa using landscape stratification of MODIS time series and comparison with existing global land products. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 83–93. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Rembold, F. Comparison of global and regional land cover maps with statistical information for the agricultural domain in Africa. Int. J. Remote Sens. 2010, 31, 2237–2256. [Google Scholar] [CrossRef]
- Hannerz, F.; Lotsch, A. Assessment of remotely sensed and statistical inventories of African agricultural fields. Int. J. Remote Sens. 2008, 29, 3787–3804. [Google Scholar] [CrossRef]
- Lambert, M.; Waldner, F.; Defourny, P. Cropland Mapping over Sahelian and Sudanian Agrosystems : A Knowledge-Based Approach Using PROBA-V Time Series at 100-m. Remote Sens. 2016, 8, 232. [Google Scholar] [CrossRef]
- Eberenz, J.; Verbesselt, J.; Herold, M.; Tsendbazar, N.E.; Sabatino, G.; Rivolta, G. Evaluating the potential of proba-v satellite image time series for improving LC classification in semi-arid African landscapes. Remote Sens. 2016. [Google Scholar] [CrossRef]
- Cord, A.; Conrad, C.; Schmidt, M.; Dech, S. Standardized FAO-LCCS land cover mapping in heterogeneous tree savannas of West Africa. J. Arid Environ. 2010, 74, 1083–1091. [Google Scholar] [CrossRef]
- Delrue, J.; Bydekerke, L.; Eerens, H.; Gilliams, S.; Piccard, I.; Swinnen, E. Crop mapping in countries with small-scale farming: A case study for West Shewa, Ethiopia. Int. J. Remote Sens. 2013, 34, 2566–2582. [Google Scholar] [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Ullmann, T.; Zoungrana, E. Integration of optical and synthetic aperture radar imagery for improving crop mapping in Northwestern Benin, West Africa. Remote Sens. 2014, 6, 6472–6499. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Asner, G.P. Cropland distributions from temporal unmixing of MODIS data. Remote Sens. Environ. 2004, 93, 412–422. [Google Scholar] [CrossRef]
- Ozdogan, M. The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component Analysis. Remote Sens. Environ. 2010, 114, 1190–1204. [Google Scholar] [CrossRef]
- Olofsson, P.; Stehman, S.V.; Woodcock, C.E.; Sulla-Menashe, D.; Sibley, A.M.; Newell, J.D.; Friedl, M.A.; Herold, M. A global land-cover validation data set, part I: fundamental design principles. Int. J. Remote Sens. 2012, 33, 5768–5788. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; Zhang, W.; Tong, X.; Mills, J. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Loveland, T.R.; Belward, A.S. The IGBP-DIS global 1km land cover data set, DISCover: First results. Int. J. Remote Sens. 1997, 18, 3289–3295. [Google Scholar] [CrossRef]
- Mayaux, P.; Bartholomé, E.; Fritz, S.; Belward, A. A new land-cover map of Africa for the year 2000. J. Biogeogr. 2004, 31, 861–877. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Cai, X.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Pandey, S. Sub-pixel Area Calculation Methods for Estimating Irrigated Areas. Sensors 2007, 7, 2519–2538. [Google Scholar] [CrossRef] [Green Version]
- Zurita-Milla, R.; Gomez-Chova, L.; Guanter, L.; Clevers, J.G.P.W.; Camps-Valls, G. Multitemporal Unmixing of Medium-Spatial-Resolution Satellite Images: A Case Study Using MERIS Images for Land-Cover Mapping. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4308–4317. [Google Scholar] [CrossRef]
- Amorós-López, J.; Gómez-Chova, L.; Alonso, L.; Guanter, L.; Zurita-Milla, R.; Moreno, J.; Camps-Valls, G. Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 132–141. [Google Scholar] [CrossRef]
- Zhu, C.; Lu, D.; Victoria, D.; Dutra, L.V. Mapping fractional cropland distribution in Mato Grosso, Brazil using time series MODIS enhanced vegetation index and Landsat Thematic Mapper data. Remote Sens. 2016. [Google Scholar] [CrossRef]
- Gessner, U.; Machwitz, M.; Conrad, C.; Dech, S. Estimating the fractional cover of growth forms and bare surface in savannas. A multi-resolution approach based on regression tree ensembles. Remote Sens. Environ. 2013, 129, 90–102. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Brandt, M.; Hiernaux, P.; Herrmann, S.M.; Tian, F.; Prishchepov, A.V.; Fensholt, R. Revisiting the coupling between NDVI trends and cropland changes in the Sahel drylands: A case study in western Niger. Remote Sens. Environ. 2017, 191, 286–296. [Google Scholar] [CrossRef]
- Callo-Concha, D.; Gaiser, T.; Ewert, F. Farming and Cropping Systems in the West African Sudanian Savanna; ZEF Working Paper Series, No. 100; University of Bonn: Bonn, Germany, 2012. [Google Scholar]
- Salack, S.; Sarr, B.; Sangare, S.K.; Ly, M.; Sanda, I.S.; Kunstmann, H. Crop−Climate ensemble scenarios to improve risk assessment and resilience in the semi-arid regions of West Africa. Clim. Res. 2015, 65, 107–121. [Google Scholar] [CrossRef]
- Jahnke, H.E. Livestock Production Systems and Livestock Development in Tropical Africa; Kieler Wissenschaftsverlag Vauk: Kiel, Germany, 1982. [Google Scholar]
- FAO; University of Ibada. Recommendations Arising from the Workshop on Shifting Cultivation and Extension; Food and Agricultural Organization: Rome, Italy, 1982. [Google Scholar]
- Ouedraogo, M.; Dembele, Y.; Some, L. Farmer perceptions and adaptation options to rainfall change: Evidence from Burkina Faso. Sécheresse 2010, 21, 87–96. [Google Scholar]
- Bado, B.V.; Bationo, A.; Lompo, F.; Traore, K.; Sedogo, M.P.; Cescas, M.P. Long Term Effects of Crop Rotations with Fallow or Groundnut on Soil Fertility and Succeeding Sorghum Yields in the Guinea Savannah of West Africa. In Lessons learned from Long-term Soil Fertility Management Experiments in Africa SE-2; Bationo, A., Waswa, B., Kihara, J., Adolwa, I., Vanlauwe, B., Saidou, K., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 27–40. ISBN 978-94-007-2937-7. [Google Scholar]
- Dixon, J.; Gulliver, A.; Gibbon, D. Farming Systems and Poverty: Improving Farmers’ Livelihoods in a Changing World; Hall, M., Ed.; FAO: Rome, Italy, 2001; ISBN 92-5-104627-1. [Google Scholar]
- Nin-Pratt, A.; Johnson, M.; Magalhaes, E.; You, L.; Diao, X.; Chamberlin, J. Yield Gaps and Potential Agricultural Growth in West and Central Africa; International Food Policy Research Institute and World Resource Institute: Washington DC, USA, 2011; Available online: www.ifpri.org/sites/default/files/publications/rr170.pdf (accessed on 25 June 2015).
- Ouédraogo, E.; Mando, A.; Zombré, N.P. Use of compost to improve soil properties and crop productivity under low input agricultural system in West Africa. Agric. Ecosyst. Environ. 2001, 84, 259–266. [Google Scholar] [CrossRef]
- Igue, A.M.; Floquet, A.; Stahr, K. Land use and farming systems in Benin. In Adapted Farming in West Africa: Issues, Potentials and Perspectives; Graef, F., Lawrence, P., von Oppen, M., Eds.; Verlag Ulrich E. Grauer: Stuttgart, Germany, 2000; pp. 227–238. ISBN 3-86186-315-4. [Google Scholar]
- Eguavoen, I. The Political Ecology of Household Water in Northern Ghana; LIT Verlag: Munster, Germany, 2008. [Google Scholar]
- Bationo, A.; Waswa, B.; Okeyo, J.M.; Maina, F.; Kihara, J.; Mokwunye, U. Comparative Analysis of the Current and Potential Role of Legumes in Integrated Soil Fertility Management in West and Central Africa. In Fighting Poverty in Sub-Saharan Africa: The Multiple Roles of Legumes in Integrated Soil Fertility Management; Bationo, A., Waswa, B., Okeyo, J.M., Maina, F., Kihara, J., Mokwunye, U., Eds.; Springer: Dordrecht, The Netherlands, 2011; ISBN 978-94-007-1536-3. [Google Scholar]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Landmann, T.; Barry, B. Evaluating the sequential masking classification approach for improving crop discrimination in the Sudanian Savanna of West Africa. Comput. Electron. Agric. 2015, 118, 380–389. [Google Scholar] [CrossRef]
- Turner, D.P.; Cohen, W.B.; Kennedy, R.E.; Fassnacht, K.S.; Briggs, J.M. Relationships between Leaf Area Index and Landsat TM Spectral Vegetation Indices across Three Temperate Zone Sites. Remote Sens. Environ. 1999, 70, 52–68. [Google Scholar] [CrossRef]
- Wu, B.; Li, Q. Crop planting and type proportion method for crop acreage estimation of complex agricultural landscapes. Int. J. Appl. Earth Obs. Geoinf. 2012, 16, 101–112. [Google Scholar] [CrossRef]
- USGS MRTWeb and MRT Services. Available online: https://mrtweb.cr.usgs.gov/ (accessed on 14 July 2014).
- Eklundh, L.; Jӧnsson, P. TIMESAT 3.0 Software Manual. Available online: www.nateko.lu.se/timesat/docs/timesat30_software_manual.pdf (accessed on 7 August 2013).
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- USGS MODIS Land Cover Product (MCD12Q1). Available online: https://e4ftl01.cr.usgs.gov/MOTA/MCD12Q1.051 (accessed on 15 September 2014).
- FAO. Forest Cover Mapping & Monitoring with NOAA-AVHRR & other Coarse Spatial Resolution Sensors; Forest Resources Assessment Programme: Rome, Italy, 2000. [Google Scholar]
- GLOBELAND30 GlobeLand30 Land Cover Product. Available online: http://www.globallandcover.com/GLC30Download/index.aspx (accessed on 20 December 2014).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by random forest. R News 2002, 2, 18–22. [Google Scholar]
- Willmott, C.J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Jain, M.; Mondal, P.; Defries, R.S.; Small, C.; Galford, G.L. Mapping cropping intensity of smallholder farms : A comparison of methods using multiple sensors. Remote Sens. Environ. 2013, 134, 210–223. [Google Scholar] [CrossRef]
- Tottrup, C.; Rasmussen, M.S.; Eklundh, L.; Jönsson, P. Mapping fractional forest cover across the highlands of mainland Southeast Asia using MODIS data and regression tree modelling. Int. J. Remote Sens. 2007, 28, 23–46. [Google Scholar] [CrossRef]
- Verbeiren, S.; Eerens, H.; Piccard, I.; Bauwens, I.; Van Orshoven, J. Sub-pixel classification of SPOT-VEGETATION time series for the assessment of regional crop areas in Belgium. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 486–497. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, J.; Zhuang, D.; Frolking, S.; Boles, S.; Xu, B.; Liu, M.; Salas, W.I.; Moore, B.; Li, C. Uncertainties in estimates of cropland area in China: A comparison between an AVHRR-derived dataset and a Landsat TM-derived dataset. Glob. Planet. Change 2003, 37, 297–306. [Google Scholar] [CrossRef]
- Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; Koetz, B. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sens. 2015, 7, 12356–12379. [Google Scholar] [CrossRef]
- Sanfo, S. Politiques Publiques Agricoles et Lutte Contre La Pauvreté au Burkina Faso: le cas de La Région du Plateau Central; Universite Paris 1 Panthé on-Sorbonne: Paris, France, 2010. [Google Scholar]
- Kolavalli, S.; Robinson, E.; Diao, X.; Alpuerto, V.; Folledo, R.; Slavova, M.; Ngeleza, G.; Asante, F. Economic Transformation in Ghana: Where Will the Path Lead? IFPRI Discussion Paper: Washington DC, USA, 2012. [Google Scholar]
- Ghana Statistical Service. 2010 POPULATION & HOUSING CENSUS SUMMARY REPORT OF FINAL RESULTS; Ghana Statistical Service: Accra, Ghana, 2012. [Google Scholar]
- Braimoh, A.K.; Vlek, P.L.G. The impact of land-cover change on soil properties in northern Ghana. L. Degrad. Dev. 2004, 15, 65–74. [Google Scholar] [CrossRef]
- Adjei-Nsiah, S.; Kuyper, T.W.; Leeuwis, C.; Abekoe, M.K.; Giller, K.E. Evaluating sustainable and profitable cropping sequences with cassava and four legume crops: Effects on soil fertility and maize yields in the forest/savannah transitional agro-ecological zone of Ghana. F. Crop. Res. 2007, 103, 87–97. [Google Scholar] [CrossRef]
- Enyong, L.A.; Debrah, S.K.; Bationo, A. Farmers’ perceptions and attitudes towards introduced soil-fertility enhancing technologies in western Africa. Nutr. Cycl. Agroecosystems 1999, 53, 177–187. [Google Scholar] [CrossRef]
- Amissah-Arthur, A.; Mougenot, B.; Loireau, M. Assessing farmland dynamics and land degradation on Sahelian landscapes using remotely sensed and socioeconomic data. Int. J. Geogr. Inf. Sci. 2000, 14, 583–599. [Google Scholar] [CrossRef]
- Tappan, G.G.; Hadj, A.; Wood, E.C.; Lletzow, R.W. Use of Argon, Corona, and Landsat Imagery to Assess 30 Years of Land Resource Changes in West-Central Senegal. Photogramm. Eng. Remote Sens. 2000, 66, 727–735. [Google Scholar]
- Tottrup, C.; Rasmussen, M.S. Mapping long-term changes in savannah crop productivity in Senegal through trend analysis of time series of remote sensing data. Agric. Ecosyst. Environ. 2004, 103, 545–560. [Google Scholar] [CrossRef]
- Seto, K.C.; Kaufmann, R.K. Modeling the Drivers of Urban Land Use Change in the Pearl River Delta, China: Integrating Remote Sensing with Socioeconomic Data. Land Econ. 2003, 79, 106–121. [Google Scholar] [CrossRef]
- Ramankutty, N. Croplands in West Africa: A Geographically Explicit Dataset for Use in Models. Earth Interact. 2004, 8, 1–22. [Google Scholar] [CrossRef]
- Yuyun, B.I.; Zheng, Z. Actual changes of cultivated area since the founding of the new China. Resour. Sci. 2000, 22, 8–12. [Google Scholar]
- Belshaw, D.G.R. Crop Production Data in Uganda: A Statistical Evaluation of International Agricultural Census Methodology; Report No. 7; East Anglia University: Norwich, UK, 1983. [Google Scholar]
Scene Number | P191_R52 | P192_R54 | P194_R52 | P195_R53 | P198_R52 | P199_R54 |
---|---|---|---|---|---|---|
Dates of Acquisition | 2 December 2013 | 9 December 2013 | 5 November 2013 | 28 November 2013 | 3 December 2013 | 10 December 2013 |
18 December 2013 | 25 December 2013 | 7 December 2013 | 14 December 2013 | 4 January 2014 | 26 December 2013 |
Landsat Tile No. | Landsat_CLM30 | GlobeLand30 | ||||
---|---|---|---|---|---|---|
OA | PA | UA | OA | PA | UA | |
P199_R54 | 93.2 | 89.1 | 86.3 | 71.0 | 0.0 | 0.0 |
P198_R52 | 97.7 | 96.5 | 99.1 | 89.5 | 78.6 | 99.9 |
P195_R53 | 96.4 | 97.4 | 91.2 | 63.7 | 13.0 | 56.0 |
P194_R52 | 98.4 | 95.8 | 97.8 | 93.2 | 82.0 | 85.3 |
P192_R54 | 95.9 | 96.2 | 95.6 | 88.0 | 70.5 | 93.6 |
P191_R52 | 95.4 | 95.4 | 94.6 | 85.3 | 58.5 | 98.0 |
Tile Number | Number of Cells | ME | MAE | RMSE | R2 |
---|---|---|---|---|---|
P198_R52 | 341,160 | −1.2 | 18.4 | 23.5 | 0.50 |
P199_R54 | 201,031 | −8.6 | 17.6 | 25.5 | 0.38 |
P194_R52 | 343,912 | 4.8 | 18.7 | 22.9 | 0.64 |
P195_R53 | 345,718 | 6.7 | 20.3 | 24.8 | 0.23 |
P191_R52 | 306,904 | 10.5 | 19.9 | 25.6 | 0.61 |
P192_R54 | 199,494 | −3.0 | 21.3 | 26.5 | 0.31 |
All | 1,738,219 | 2.3 ± 3.49 | 19.1 ± 1.37 | 24.5 ± 1.37 | 0.51 ± 0.17 |
Validation Tile | ||||||||
---|---|---|---|---|---|---|---|---|
Tile Name | P198_R52 | P199_R54 | P194_R52 | P195_R53 | P191_R52 | P192_R54 | All | |
Prediction tile | P198_R52 | +1.2 | −5.1 [437] | −10.6 [677] | +4.8 [407] | −15.3 [1173] | −6.3 [910] | −4.9 |
P199_R54 | −18.6 [437] | +1.5 | −23.6 [1048] | −19.5 [728] | −21.1 [1534] | −2.2 [1197] | −15.4 | |
P194_R52 | −5.9 [677] | −9.2 [1048] | +3.6 | +3.3 [328] | +1.7 [497] | −12.0 [342] | −2.3 | |
P195_R53 | −8.9 [407] | −4.4 [728] | −13.5 [328] | +4.4 | −19.5 [807] | −1.2 [504] | −7.5 | |
P191_R52 | −4.6 [1173] | −7.2 [1534] | +0.2 [497] | +4.5 [807] | +2.6 | −11.0 [428] | −1.7 | |
P192_R54 | −19.4 [910] | +3.3 [1197] | −18.4 [342] | −14.2 [504] | −22.5 [428] | +2.2 | −13.0 |
Validation Tile | ||||||||
---|---|---|---|---|---|---|---|---|
P198_R52 | P199_R54 | P194_R52 | P195_R53 | P191_R52 | P192_R54 | All | ||
Prediction tile | Western | +0.1 | −0.4 | −7.5 | −10.2 | −15.4 | −3.3 | −6.4 |
Middle | −7.5 | −5.2 | +0.2 | +4.3 | −4.1 | −2.0 | −2.3 | |
Eastern | −12.5 | +2.2 | −2.5 | −9.9 | −1.6 | +1.5 | −4.5 | |
Northern | +0.3 | −6.9 | +2.6 | +4.3 | −0.4 | −7.6 | −0.6 | |
Southern | −14.4 | +1.4 | −13.9 | −4.0 | −22.6 | +1.0 | −9.6 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forkuor, G.; Conrad, C.; Thiel, M.; Zoungrana, B.J.-B.; Tondoh, J.E. Multiscale Remote Sensing to Map the Spatial Distribution and Extent of Cropland in the Sudanian Savanna of West Africa. Remote Sens. 2017, 9, 839. https://doi.org/10.3390/rs9080839
Forkuor G, Conrad C, Thiel M, Zoungrana BJ-B, Tondoh JE. Multiscale Remote Sensing to Map the Spatial Distribution and Extent of Cropland in the Sudanian Savanna of West Africa. Remote Sensing. 2017; 9(8):839. https://doi.org/10.3390/rs9080839
Chicago/Turabian StyleForkuor, Gerald, Christopher Conrad, Michael Thiel, Benewinde J-B. Zoungrana, and Jérôme E. Tondoh. 2017. "Multiscale Remote Sensing to Map the Spatial Distribution and Extent of Cropland in the Sudanian Savanna of West Africa" Remote Sensing 9, no. 8: 839. https://doi.org/10.3390/rs9080839