Evaluating the Applicability of Four Latest Satellite–Gauge Combined Precipitation Estimates for Extreme Precipitation and Streamflow Predictions over the Upper Yellow River Basins in China
Abstract
:1. Introduction
2. Study Areas, Datasets and Metrics
2.1. Study Area
2.2. Datasets Description
2.3. Hydrological Model
2.4. Statistical Evaluation Metrics
3. Results and Analysis
3.1. Evaluation and Comparison of Satellite-Gauged Precipitation Estimates
3.2. Extreme Precipitation Analysis
3.3. Streamflow Simulations Analysis
3.4. Extreme Streamflow Analysis
4. Discussion
5. Summary and Conclusions
- Compared to the CMA precipitation, the four SGPEs could generally captured the spatial distribution of precipitation well in spite of the underestimation in the western mountains and overestimation in the southeast which is located in a lower elevation. Overall, CDR overrated the precipitation in basin scale while 3B42 performs best. However, the two CMORPH (CRT and BLD) agreed well with CMA in time series of watershed average precipitation in both the calibration and verification periods.
- The spatial pattern of the extreme precipitation was similar to that of daily average precipitation with the precipitation amount increasing from the northwest to the southeast. The disastrous heavy rain mainly occurred in the southeast corner of the basin. Also, 3B42 and CDR overestimated the extreme precipitation, especially in the southeast, while CRT and BLD were closer to CMA in the distribution of extreme precipitation.
- Notice that none of the four SGPEs performed better than CMA in hydrologic utility. However, BLD performed fairly well and showed comparable hydrologic utility with CMA over UYRB, and CRT and 3B42 showed an acceptable performance. In contrast, CDR is equipped with little potential for the streamflow simulation with wildly overrating the discharge in flood season. This is closely related to the overreaction of the extreme precipitation over the southeastern part of UYRB.
- It can be seen that the four SGPEs showed well performance in the 2005 floods event, while they all exhibited poor performance in matching the hydrograph of the 2012 flood event which was a disastrous flood for the longyangxia reservoir. The simulation results of 2012 flood event indicated that maybe there exist large errors in SGPEs for a few rather large torrential rain events which could generate errors in estimating flood peaks, peak times and flood volume. Hence, it should be used with caution for the SGPEs in simulating massive flood events over UYRB.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hong, Y.; Adler, R.F.; Huffman, G.J.; Pierce, H. Applications of Trmm-Based Multi-Satellite Precipitation Estimation for Global Runoff Prediction: Prototyping a Global Flood Modeling System; Springer: Dordrecht, The Netherlands, 2010; pp. 245–265. [Google Scholar]
- Winsemius, H.C.; Aerts, J.; van Beek, L.P.; Bierkens, M.F.; Bouwman, A.; Jongman, B.; Kwadijk, J.C.; Ligtvoet, W.; Lucas, P.L.; van Vuuren, D.P. Global drivers of future river flood risk. Nat. Clim. Chang. 2016, 6, 381–385. [Google Scholar] [CrossRef]
- Rozalis, S.; Morin, E.; Yair, Y.; Price, C. Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a mediterranean watershed under changing hydrological conditions. J. Hydrol. 2010, 394, 245–255. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.L.; Coppola, E.; Tomassetti, B.; Verdecchia, M.; Visconti, G. Hydrological Modelling and the Water Cycle; Springer: New York, NY, USA, 2008. [Google Scholar]
- Meng, J.; Li, L.; Hao, Z.; Wang, J.; Shao, Q. Suitability of trmm satellite rainfall in driving a distributed hydrological model in the source region of yellow river. J. Hydrol. 2014, 509, 320–332. [Google Scholar] [CrossRef]
- Yong, B.; Ren, L.L.; Hong, Y.; Wang, J.H.; Gourley, J.J.; Jiang, S.H.; Chen, X.; Wang, W. Hydrologic evaluation of multisatellite precipitation analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resour. Res. 2010, 46, 759–768. [Google Scholar] [CrossRef]
- Mishra, A.K.; Coulibaly, P. Developments in hydrometric network design: A review. Rev. Geophys. 2009, 47, 2415–2440. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; Mcgavock, B.; Susskind, J. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, Z.; Huang, Y.; Chen, X.; Chen, S. Evaluating the trmm multisatellite precipitation analysis for extreme precipitation and streamflow in ganjiang river basin, China. Adv. Meteorol. 2017, 2017, 177–195. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.; Nelkin, E.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The trmm multisatellite precipitation analysis (tmpa): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. Cmorph: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.L.; Gao, X.; Gupta, H.V.; Imam, B.; Dan, B. Evaluation of persiann system satellite–based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2010, 81, 2035–2046. [Google Scholar] [CrossRef]
- Xue, X.; Hong, Y.; Limaye, A.S.; Gourley, J.J.; Huffman, G.J.; Khan, S.I.; Dorji, C.; Chen, S. Statistical and hydrological evaluation of trmm-based multi-satellite precipitation analysis over the wangchu basin of bhutan: Are the latest satellite precipitation products 3b42v7 ready for use in ungauged basins? J. Hydrol. 2013, 499, 91–99. [Google Scholar] [CrossRef]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Am. Meteorol. Soc. 2010, 88, 47. [Google Scholar] [CrossRef]
- Gebregiorgis, A.S.; Tian, Y.; Peters-Lidard, C.D.; Hossain, F. Tracing hydrologic model simulation error as a function of satellite rainfall estimation bias components and land use and land cover conditions. Water Resour. Res. 2012, 48, 11509. [Google Scholar] [CrossRef]
- Gebremichael, M.; Bitew, M.M.; Hirpa, F.A.; Tesfay, G.N. Accuracy of satellite rainfall estimates in the blue nile basin: Lowland plain versus highland mountain. Water Resour. Res. 2015, 50, 8775–8790. [Google Scholar] [CrossRef]
- Mei, Y.; Nikolopoulos, E.I.; Anagnostou, E.N.; Borga, M. Evaluating satellite precipitation error propagation in runoff simulations of mountainous basins. J. Hydrometeorol. 2015, 17. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, M. Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan plateau. Hydrol. Earth Syst. Sci. 2013, 17, 837–849. [Google Scholar] [CrossRef]
- Jiang, S.H.; Zhou, M.; Ren, L.L.; Cheng, X.R.; Zhang, P.J. Evaluation of latest tmpa and cmorph satellite precipitation products for Yellow river basin. Water Sci. Eng. 2016, 9, 87–96. [Google Scholar] [CrossRef]
- Li, Z.; Yang, D.; Hong, Y. Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze river. J. Hydrol. 2013, 500, 157–169. [Google Scholar] [CrossRef]
- Tong, K.; Su, F.; Yang, D.; Hao, Z. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the tibetan plateau. J. Hydrol. 2014, 519, 423–437. [Google Scholar]
- Alazzy, A.A.; Lü, H.; Chen, R.; Ali, A.B.; Zhu, Y.; Su, J. Evaluation of satellite precipitation products and their potential influence on hydrological modeling over the Ganzi river basin of the Tibetan plateau. Adv. Meteorol. 2017. [Google Scholar] [CrossRef]
- Siddiqueeakbor, A.H.M.; Hossain, F.; Sikder, S.; Shum, C.K.; Tseng, S.; Yi, Y.; Turk, F.J.; Limaye, A. Satellite precipitation data-driven hydrological modeling for water resources management in the ganges, brahmaputra, and meghna basins. Earth Interact. 2014, 18, 1–25. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S.; Mo, X.; Peng, B.; Qiu, J.; Li, M.; Liu, C.; Wang, Z.; Bauergottwein, P. Evaluation of remotely sensed precipitation and its performance for streamflow simulations in basins of the southeast Tibetan plateau. J. Hydrometeorol. 2015, 16, 342–354. [Google Scholar] [CrossRef]
- Wang, W.; Lu, H.; Yang, D.; Sothea, K.; Jiao, Y.; Gao, B.; Peng, X.; Pang, Z. Modelling hydrologic processes in the mekong river basin using a distributed model driven by satellite precipitation and rain gauge observations. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.S.; Kousky, V.E.; Wayne Higgins, R.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos. 2008, 113, 4110. [Google Scholar] [CrossRef]
- Sorooshian, S.; Aghakouchak, A.; Arkin, P.; Eylander, J.; Foufoulageorgiou, E.; Harmon, R.; Hendrickx, J.M.H.; Imam, B.; Kuligowski, R.; Skahill, B. Advanced concepts on remote sensing of precipitation at multiple scales. Bull. Am. Meteorol. Soc. 2011, 92, 1353–1357. [Google Scholar] [CrossRef]
- Casse, C.; Gosset, M. Analysis of hydrological changes and flood increase in niamey based on the persiann-cdr satellite rainfall estimate and hydrological simulations over the 1983–2013 period. Proc. Int. Assoc. Hydrol. Sci. 2015, 370, 117–123. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Hu, J.; Gebregiorgis, A.; Xue, X.; Zhang, X. Inter-comparison of high-resolution satellite precipitation products over central Asia. Remote Sens. 2015, 7, 7181–7211. [Google Scholar] [CrossRef]
- Miao, C.; Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Duan, Q. Evaluation of the Persiann-Cdr Daily Rainfall Estimates in Capturing the Behavior of Extreme Precipitation Events over China. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 15–19 December 2014. [Google Scholar]
- Sun, R.; Yuan, H.; Liu, X.; Jiang, X. Evaluation of the latest satellite–gauge precipitation products and their hydrologic applications over the Huaihe river basin. J. Hydrol. 2016, 536, 302–319. [Google Scholar] [CrossRef]
- Duan, Z.; Liu, J.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded precipitation products in adige basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ. 2016, 573, 1536–1553. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, T.; Hsu, K.; Liu, C.; Sorooshian, S. Evaluating the streamflow simulation capability of persiann-cdr daily rainfall products in two river basins on the tibetan plateau. Hydrol. Earth Syst. Sci. Discuss. 2017, 21, 169–181. [Google Scholar] [CrossRef]
- CMORPH_V1.0 Data Downloads. Available online: ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/ (accessed on 28 August 2016).
- PERSIANN Data Downloads. Available online: ftp://persiann.eng.uci.edu/pub/ (accessed on 28 March 2017).
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F. One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res. 1996, 101, 21403–21422. [Google Scholar] [CrossRef]
- Cherkauer, K.A.; Bowling, L.C.; Lettenmaier, D.P. Variable infiltration capacity cold land process model updates. Glob. Planet. Chang. 2003, 38, 151–159. [Google Scholar] [CrossRef]
- Andreadis, K.M.; Storck, P.; Lettenmaier, D.P. Modeling snow accumulation and ablation processes in forested environments. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Bowling, L.C.; Lettenmaier, D.P. Modeling the effects of lakes and wetlands on the water balance of arctic environments. J. Hydrometeorol. 2010, 11, 276–295. [Google Scholar] [CrossRef]
- Renjun, Z.; Yilin, Z.; Lerun, F.; Xinren, L.I.U.; Quan, Z. The Xinanjiang Model. 1980. Available online: https://www.researchgate.net/publication/284757089_The_Xinanjiang_model (accessed on 7 October 2017).
- Franchini, M.; Pacciani, M. Comparative analysis of several rainfall runoff models. J. Hydrol. 1991, 122, 161–219. [Google Scholar] [CrossRef]
- Lohmann, D.; Raschke, E.; Nijssen, B.; Lettenmaier, D.P. Regional scale hydrology: I. Formulation of the vic-2l model coupled to a routing model. Hydrol. Sci. J. 1998, 43, 131–141. [Google Scholar] [CrossRef]
- Xie, Z.; Yuan, F.; Duan, Q.; Zheng, J.; Liang, M.; Chen, F. Regional parameter estimation of the vic land surface model: Methodology and application to river basins in China. J. Hydrometeorol. 2007, 8, 447. [Google Scholar] [CrossRef]
- Wu, H.; Adler, R.F.; Tian, Y.; Huffman, G.J.; Li, H.; Wang, J. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res. 2014, 50, 2693–2717. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D. Systematic anomalies over inland water bodies in satellite-based precipitation estimates. Geophys. Res. Lett. 2007, 34, 150–173. [Google Scholar] [CrossRef]
- Wang, W.; Chen, X.; Shi, P.; Phajmvan, G. Detecting changes in extreme precipitation and extreme streamflow in the dongjiang river basin in southern China. Hydrol. Earth Syst. Sci. 2008, 12, 207–221. [Google Scholar] [CrossRef]
- Zhang, L.; Su, F.; Yang, D.; Hao, Z.; Tong, K. Discharge regime and simulation for the upstream of major rivers over Tibetan plateau. J. Geophys. Res. Atmos. 2013, 118, 8500–8518. [Google Scholar] [CrossRef]
- Fan, G.; Xie, W.; Mao, L. Statistical analysis on the temporal and spatial distribution characteristics of floods in the yellow river source area (Chinese). Yellow River 2013, 35, 27–31. [Google Scholar]
Category | Hydrometric Station | Area (km2) | Average Elevation (m) | Average Runoff (m3/s) |
---|---|---|---|---|
upstream | Jimai | 45,019 | 4464 | 173.75 |
midstream | Maqu | 41,029 | 3894 | 470.92 |
downstream | Tangnaihai | 35,924 | 3947 | 696.70 |
Dataset | Calibration | Verification | Total | ||||||
---|---|---|---|---|---|---|---|---|---|
NS | CC | RB (%) | NS | CC | RB (%) | NS | CC | RB (%) | |
CMA | 0.80 | 0.90 | 4.84 | 0.80 | 0.90 | −7.48 | 0.81 | 0.90 | −3.04 |
CRT | 0.47 | 0.8 | 24.76 | 0.68 | 0.83 | −8.98 | 0.61 | 0.80 | 3.16 |
BLD | 0.72 | 0.87 | 13.76 | 0.75 | 0.88 | −12.08 | 0.74 | 0.86 | −2.78 |
CDR | <0 | 0.74 | 32.01 | <0 | 0.72 | 12.74 | <0 | 0.72 | 19.68 |
3B42 | 0.62 | 0.83 | 3.84 | 0.65 | 0.83 | −6.46 | 0.64 | 0.83 | −2.75 |
Dataset | 95% St | H1D St | H3D St | H7D St | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NS | CC | RB (%) | NS | CC | RB (%) | NS | CC | RB (%) | NS | CC | RB (%) | |
CMA | 0.56 | 0.84 | −4.33 | 0.59 | 0.83 | 4.08 | 0.60 | 0.83 | 3.94 | 0.57 | 0.81 | 2.48 |
CRT | 0.37 | 0.69 | 5.38 | 0.45 | 0.76 | 8.59 | 0.42 | 0.73 | 8.02 | 0.36 | 0.67 | 7.51 |
BLD | 0.59 | 0.83 | −0.88 | 0.63 | 0.85 | 1.13 | 0.61 | 0.84 | 0.92 | 0.56 | 0.80 | 0.41 |
CDR | <0 | 0.70 | 49.89 | <0 | 0.52 | 95.83 | <0 | 0.50 | 93.84 | <0 | 0.44 | 87.79 |
3B42 | 0.26 | 0.71 | 16.89 | <0 | 0.60 | 28.54 | <0 | 0.59 | 26.72 | <0 | 0.58 | 22.9 |
Event | Start | End | Peak Discharge (m3/s) | Flood Volume (109 m3) | Last (Day) |
---|---|---|---|---|---|
2005 | 18 September | 31 October | 2720 | 59.7 | 44 |
2012 | 26 June | 13 September | 3350 | 149.3 | 80 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, J.; Lü, H.; Wang, J.; Sadeghi, A.M.; Zhu, Y. Evaluating the Applicability of Four Latest Satellite–Gauge Combined Precipitation Estimates for Extreme Precipitation and Streamflow Predictions over the Upper Yellow River Basins in China. Remote Sens. 2017, 9, 1176. https://doi.org/10.3390/rs9111176
Su J, Lü H, Wang J, Sadeghi AM, Zhu Y. Evaluating the Applicability of Four Latest Satellite–Gauge Combined Precipitation Estimates for Extreme Precipitation and Streamflow Predictions over the Upper Yellow River Basins in China. Remote Sensing. 2017; 9(11):1176. https://doi.org/10.3390/rs9111176
Chicago/Turabian StyleSu, Jianbin, Haishen Lü, Jianqun Wang, Ali M. Sadeghi, and Yonghua Zhu. 2017. "Evaluating the Applicability of Four Latest Satellite–Gauge Combined Precipitation Estimates for Extreme Precipitation and Streamflow Predictions over the Upper Yellow River Basins in China" Remote Sensing 9, no. 11: 1176. https://doi.org/10.3390/rs9111176
APA StyleSu, J., Lü, H., Wang, J., Sadeghi, A. M., & Zhu, Y. (2017). Evaluating the Applicability of Four Latest Satellite–Gauge Combined Precipitation Estimates for Extreme Precipitation and Streamflow Predictions over the Upper Yellow River Basins in China. Remote Sensing, 9(11), 1176. https://doi.org/10.3390/rs9111176