Liquid-Phase Packaging of a Glucose Oxidase Solution with Parylene Direct Encapsulation and an Ultraviolet Curing Adhesive Cover for Glucose Sensors
Abstract
:1. Introduction
2. Experimental
2.1. Structure of the Package Containing the Glucose Oxidase Solution
2.2. Preparation of Glucose Oxidase Solution and Glucose Solution
2.3. Fabrication of Electrochemical Electrodes
2.4. Parylene Encapsulation and Construction of the UV Adhesive Cover
2.5. Measurement of the Glucose Concentration
3. Results and Discussion
3.1. Encapsulation and Unsealing of the Package
3.2. Demonstration of Glucose Sensing with a Packaged Glucose Oxidase Solution
4. Conclusions
References
- Diabetes. Available online: http://www.who.int/mediacentre/factsheets/fs312/en/index.html/ (accessed on 18 March 2010).
- Wang, J. Glucose Biosensors: 40 Years of advances and challenges. Electroanalysis 2001, 13, 983–988. [Google Scholar]
- Suzuki, H. Advances in the microfabrication of electrochemical sensors and systems. Electroanalysis 2000, 12, 703–715. [Google Scholar]
- Heller, A.; Fekdman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev 2008, 108, 2482–2505. [Google Scholar]
- Shim, N.Y.; Bernard, D.A.; Macaya, D.J.; DeFranco, J.A.; Nikolou, M.; Owens, R.M.; Malliaras, G.G. All-plastic electrochemical transistor for glucose sensing using a ferrocene mediator. Sensors 2009, 9, 9896–9902. [Google Scholar]
- Stein, E.W.; Grant, P.S.; Zhu, H.; Mcshane, M.J. Microscale enzymatic optical biosensors using mass transport limiting nanofilms. 1. fabrication and characterization using glucose as a model analyte. Anal. Chem 2007, 79, 1339–1348. [Google Scholar]
- Matsumoto, T.; Furusawa, M.; Fujiwara, H.; Matsumoto, Y.; Ito, N. A micro-planar amperometric glucose sensor unsusceptible to interferernce species. Sens. Actuat. B 1998, 49, 68–72. [Google Scholar]
- Nakamoto, S.; Ito, N.; Kuriyama, T.; Kimura, J. A lift-off method for patterning enzyme-immobilized membranes in multibiosensors. Sens. Actuat 1988, 13, 165–172. [Google Scholar]
- Steinkuhl, R.; Dumschat, C.; Sundermeier, C.; Hinkers, H.; Renneberg, R.; Cammann, K.; Knoll, M. Micromachined glucose sensor. Biosens. Bioelectron 1996, 11, 187–190. [Google Scholar]
- Shiono, S.; Hanazato, Y.; Nakako, M. Urea and glucose sensors based on ion sensitive field effect transistor with photolithographycally patterned enzyme membrane. Anal. Sci 1986, 2, 517–521. [Google Scholar]
- Urban, G.; Jobst, G.; Kohl, F.; Jachimowicz, A.; Olcytug, F.; Tilado, O.; Goiser, P.; Nauer, G.; Pittner, F.; Schalkhammer, T.; Mann-buxbaum, E. Miniaturized thin-film biosensors using covalently immobilized glucose oxidase. Biosens. Bioelectron 1991, 6, 555–561. [Google Scholar]
- Karube, I.; Mitusda, S.; Suzuki, S. Glucose sensor using immobilized whole cells of pseudomonas-fluorescens. Eur. J. Appl. Microbiol. Biotech 1979, 7, 343–350. [Google Scholar]
- Zhu, J.Z.; Xie, J.F.; Lu, D.R.; Zhang, G.X.; Zhang, Z.R. Micromachined glucose sensor and K+ ISE based on containment array. Sens. Actuat. B 2000, 65, 157–159. [Google Scholar]
- Nakamura, S.; Fujiki, S. Comparative studies on the glucose oxidases of Aspergillus niger and Penicillium amagasakiense. J. Biochem 1968, 63, 51–58. [Google Scholar]
- Senturia, S.D.; Smith, R.L. Microsensor packaging and system partitioning. Sens. Actuat 1988, 15, 221–234. [Google Scholar]
- Kim, Y.; Kim, E.; Kim, S.; Ju, B. Low temperature epoxy bonding for wafer level MEMS packaging. Sens. Actuat. A 2007, 143, 323–328. [Google Scholar]
- Matsumoto, S.; Ichikawa, N. New methods for liquid encapsulation in polymer MEMS structure. Proceedings of MEMS 08, Tucson, AZ, USA, January 2008; pp. 417–421.
- Binh-Khiem, N.; Matsumoto, K.; Shimoyama, I. Polymer thin film deposited on liquid for varifocal encapsulated liquid lenses. Appl. Phys. Lett 2008, 93, 124101. [Google Scholar]
- Zhao, H.; Campbell, S.; Jackson, L.; Song, Z.; Olubajo, O. Hofmeister series of ionic liquids: Kosmotropic effect of ionic liquids on the enzymatic hydrolysis of enantiomeric physnylalanine methyl ester. Tetrahedron: Asymmetry 2006, 17, 377–383. [Google Scholar]
- Yang, Z. Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J. Biotechnol 2009, 144, 12–22. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Takamatsu, S.; Takano, H.; Binh-Khiem, N.; Takahata, T.; Iwase, E.; Matsumoto, K.; Shimoyama, I. Liquid-Phase Packaging of a Glucose Oxidase Solution with Parylene Direct Encapsulation and an Ultraviolet Curing Adhesive Cover for Glucose Sensors. Sensors 2010, 10, 5888-5898. https://doi.org/10.3390/s100605888
Takamatsu S, Takano H, Binh-Khiem N, Takahata T, Iwase E, Matsumoto K, Shimoyama I. Liquid-Phase Packaging of a Glucose Oxidase Solution with Parylene Direct Encapsulation and an Ultraviolet Curing Adhesive Cover for Glucose Sensors. Sensors. 2010; 10(6):5888-5898. https://doi.org/10.3390/s100605888
Chicago/Turabian StyleTakamatsu, Seiichi, Hisanori Takano, Nguyen Binh-Khiem, Tomoyuki Takahata, Eiji Iwase, Kiyoshi Matsumoto, and Isao Shimoyama. 2010. "Liquid-Phase Packaging of a Glucose Oxidase Solution with Parylene Direct Encapsulation and an Ultraviolet Curing Adhesive Cover for Glucose Sensors" Sensors 10, no. 6: 5888-5898. https://doi.org/10.3390/s100605888