RB Particle Filter Time Synchronization Algorithm Based on the DPM Model
Abstract
:1. Introduction
2. RBPF Time Synchronization Algorithm Based on the DPM Model
2.1. State-Space Equation of Two-Way Timing Message Exchange
2.2. Observation Noise DPM Model
2.3. State Tracking Based on DPM-RBFPF
2.4. Algorithmic Process
Algorithm 1. DPM-RBPF algorithm. |
Step (1) Initialize the DPM model and the state-space equation.
|
Step (2) Resample the particles and update the DPM model.
|
Step (3) Estimate the state variable.
|
3. The Performance and the Analysis
3.1. Simulations’ Comparison
3.2. Parameters’ Analysis
3.2.1. Relationship Analysis between the Number of Observations and MSE
3.2.2. Relationship Analysis between the Number of Particles and MSE
3.3. Experimental Measurement
k | No calibration | Calibration (µs) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
T0,k | T1,k | T2,k | T3,k | T4,k | T0,k | T1,k | T2,k | T3,k | T4,k | |
k0 | 0 | 118,104,732 | 100,814,673 | 100,816,003 | 118,225,238 | 277,031 | 118,104,732 | 118,161,017 | 118,162,347 | 118,225,238 |
k0 + 1 | 0 | 120,234,711 | 102,616,610 | 102,617,649 | 120,306,343 | 275,900 | 120,234,711 | 120,238,854 | 120,239,893 | 120,306,343 |
k0 + 2 | 0 | 122,324,748 | 104,408,959 | 104,410,527 | 122,395,988 | 307,936 | 122,324,748 | 122,339,139 | 122,340,707 | 122,395,988 |
k0 + 3 | 0 | 124,414,626 | 106,189,262 | 106,190,567 | 124,564,677 | 314,981 | 124,414,626 | 124,434,423 | 124,435,728 | 124,564,677 |
Node A | Node B | Node C | Node D | |||||
---|---|---|---|---|---|---|---|---|
MEAN | STD | MEAN | STD | MEAN | STD | MEAN | STD | |
ASCTS θA(µs) | −53.9 | 408.4 | −33.5 | 313.7 | −25.4 | 552.3 | 18.3 | 319.5 |
ASCTS θB(Hz) | −0.99 | 0.004 | −0.101 | 0.003 | −0.99 | 0.004 | −0.99 | 0.003 |
DPM-RBPF θA(µs) | 16.1 | 288.8 | 160.2 | 211.5 | 151.3 | 379.3 | 36.4 | 260.5 |
DPM-RBPF θB(Hz) | −0.10 | 0.002 | −0.099 | 0.002 | −0.99 | 0.001 | −0.99 | 0.002 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chong, C.Y.; Kumar, S.P. Sensor networks: Evolution, opportunities, and challenges. IEEE Proceed. 2003, 8, 1247–1256. [Google Scholar] [CrossRef]
- Jafari, R.; Encarnacao, A.; Zahoory, A.; Dabiri, F.; Noshadi, H.; Sarrafzadeh, M. Wireless sensor networks for health monitoring. In Proceedings of the 2th Annual International Conference on Mobile and Ubiquitous Systems, San Diego, CA, USA, 1 January 2005; pp. 479–481.
- Elson, J.; Romer, K. Wireless sensor networks: A new regime for time synchronization. In Proceedings of the First Workshop on Hot Topics In Networks, Princeton, NJ, USA, 28–29 October 2002; pp. 149–154.
- Sivrikaya, F.; Yener, B. Time synchronization in sensor networks: A survey. IEEE Netw. 2004, 4, 45–50. [Google Scholar] [CrossRef]
- Chen, H.Y.; Gao, F.F.; Martins, M.; Huang, P.; Liang, J.L. Accurate and Efficient Node Localization for Mobile Sensor Networks. Mobile Netw. Appl. 2013, 1, 141–147. [Google Scholar] [CrossRef]
- Chen, H.Y.; Liu, B.; Huang, P.; Liang, J.L.; Gu, Y. Mobility-Assisted Node Localization Based on TOA Measurements Without Time Synchronization in Wireless Sensor Networks. Mobile Netw. Appl. 2012, 1, 90–99. [Google Scholar] [CrossRef]
- Liu, B.; Chen, H.Y.; Zhong, Z.G.; Poor, H.V. Asymmetrical Round Trip Based Synchronization-Free Localization in Large-Scale Underwater Sensor Networks. IEEE Trans. Wirel. Commun. 2010, 11, 3532–3542. [Google Scholar] [CrossRef]
- Cho, H.; Kim, J.; Baek, Y. Enhanced Precision Time Synchronization for Wireless Sensor Networks. Sensors 2011, 11, 7625–7643. [Google Scholar] [CrossRef] [PubMed]
- Bulusu, N.; Jha, S. Wireless Sensor Networks: A Systems Perspective; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Elson, J.; Girod, L.; Estrin, D. Fine-Grained Network Time Synchronization using Reference Broadcasts. In Proceedings of the Fifth Symposium on Operating Systems Design and Implementation (OSDI2002), Boston, MA, USA, 9–11 December 2002; pp. 147–163.
- Maroti, M.; Kusy, B.; Simon, G.; Ledeczi, A. The flooding time synchronization protocol. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore, MA, USA, 3–5 November 2004; pp. 39–49.
- Ganeriwal, S.; Kumar, R.; Srivastava, M.B. Timing-Sync Protocol for Sensor Networks. In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, USA, 5–7 November 2003; pp. 138–149.
- Ping, S. Delay Measurement Time Synchronization for Wireless Sensor Networks; Technical Report for Intel Research Berkeley Lab: Pittsburgh, PA, USA, June 2003; pp. 1–10. [Google Scholar]
- Jeske, D.R. On maximum-likelihood estimation of clock offset. IEEE Trans. Commun. 2005, 1, 53–54. [Google Scholar] [CrossRef]
- Noh, K.L.; Chaudhari, Q.M.; Serpedin, E.; Suter, B.W. Novel Clock Phase Offset and Skew Estimation Using Two-Way Timing Message Exchanges for Wireless Sensor Networks. IEEE Trans. Commun. 2007, 4, 766–777. [Google Scholar] [CrossRef]
- Chaudhari, Q.M.; Serpedin, E.; Qaraqe, K. On Maximum Likelihood Estimation of Clock Offset and Skew in Networks with Exponential Delays. IEEE Trans. Signal Process. 2008, 4, 1685–1697. [Google Scholar] [CrossRef]
- Chaudhari, Q.M.; Serpedin, E.; Qaraqe, K. On Minimum Variance Unbiased Estimation of Clock Offset in a Two-Way Message Exchange Mechanism. IEEE Trans. Inf. Theory 2010, 6, 2893–2904. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, J.; Serpedin, E.; Qaraqe, K. A robust estimation scheme for clock phase offsets in wireless sensor networks in the presence of non-Gaussian random delays. Signal Process. 2009, 6, 1155–1161. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, J.; Serpedin, E.; Qaraqe, K. A Robust Approach for Clock Offsets Estimation in Wireless Sensor Networks. EURASIP J. Adv. Sig. Proc. 2010, 2010. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, J.; Serpedin, E.; Qaraqe, K. Robust Clock Synchronization in Wireless Sensor Networks through Noise Density Estimation. IEEE Trans. Signal Process. 2011, 7, 3035–3047. [Google Scholar] [CrossRef]
- Teh, Y.W.; Jordan, M.I.; Beal, M.J.; Blei, D.M. Hierarchical Dirichlet Processes. J. Am. Statist. Assoc. 2004, 1, 6–10. [Google Scholar] [CrossRef]
- Schon, T.; Gustafsson, F.; Nordlund, P.J. Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Trans. Signal Process. 2005, 7, 2279–2289. [Google Scholar] [CrossRef]
- Ota, K.; Duflos, E.; Vanheeghe, P.; Yanagida, M. Speech recognition with speech density estimation by the Dirichlet Process Mixture. In Proceedings of the IEEE International Conference on Speech and Signal Processing (ICASSP), Las Vegas, NV, USA, 31 March–4 April 2008; pp. 1553–1556.
- Cherian, A.; Morellas, V.; Papanikolopoulos, N.; Bedros, S.J. Dirichlet process mixture models on symmetric positive definite matrices for appearance clustering in video surveillance applications. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 20–25 June 2011; pp. 3417–3424.
- Rabaoui, A.; Viandier, N.; Marais, J.; Duflos, E. On selecting the hyperparameters of the DPM models for the density estimation of observation errors. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 4092–4095.
- Miller, I.; Campbell, M.; Huttenlocher, D. Efficient Unbiased Tracking of Multiple Dynamic Obstacles under Large Viewpoint Changes. IEEE Trans. Robot. 2011, 1, 29–46. [Google Scholar] [CrossRef]
- Maddern, W.; Milford, M.; Wyeth, G. Continuous appearance-based trajectory SLAM. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 3595–3600.
- Karlsson, R.; Schon, T.; Gustafsson, F. Complexity analysis of the marginalized particle filter. IEEE Trans. Signal Process. 2005, 11, 4408–4411. [Google Scholar] [CrossRef]
- Liu, B.; Ren, F.Y.; Shen, J.Y.; Chen, H.Y. Advanced self-correcting time synchronization in wireless sensor networks. IEEE Commun. Lett. 2010, 4, 309–311. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Shen, J.; Sun, Y.; Ying, N. RB Particle Filter Time Synchronization Algorithm Based on the DPM Model. Sensors 2015, 15, 22249-22265. https://doi.org/10.3390/s150922249
Guo C, Shen J, Sun Y, Ying N. RB Particle Filter Time Synchronization Algorithm Based on the DPM Model. Sensors. 2015; 15(9):22249-22265. https://doi.org/10.3390/s150922249
Chicago/Turabian StyleGuo, Chunsheng, Jia Shen, Yao Sun, and Na Ying. 2015. "RB Particle Filter Time Synchronization Algorithm Based on the DPM Model" Sensors 15, no. 9: 22249-22265. https://doi.org/10.3390/s150922249