Study on the Sensing Coating of the Optical Fibre CO2 Sensor
Abstract
:1. Introduction
1.1. An Overview of Current Carbon Dioxide Sensors Applications
1.2. Commercially Available CO2 Sensors
1.3. Optical Fibre Gas Sensors
2. Proposed CO2 Sensor
Polymers | Silica Gels | |
---|---|---|
Porosity | varied: low to moderate | high |
Transparency | varied: moderate to high | varied: low to high |
Surface quality | smooth | pores |
Mechanical behaviour | elastic | varied: moderately elastic to brittle |
Cost of single deposition process | low | low |
Cost of series coating process | low | moderate (periodic gelling process) |
Easiness of deposition | easy | easy |
Easiness of the solution preparation | easy | moderately difficult |
Coatings with different thickness | possible to deposit | possible to deposit |
Solubility of organic dyes | limited to those soluble in a solvent dedicated to the polymer | limited to those soluble in water and alcohols |
Leakage of organic dyes | possible unless copolymerized or immobilized otherwise | possible unless immobilized |
3. Experimental Section
4. Results and Discussion
4.1. Analysed Indicator Dyes
4.2. Influence of the Dye Concentration
4.3. Influence of the Active Layer Thickness on the Response of the Sensor
4.4. Repeatability of the Sensor Response
4.5. Response Time of the Sensor
4.6. Influence of Temperature
4.7. Cross-Sensitivity to Other Gases
4.8. Final Recommended Solution
4.9. Self-Referencing Arrangement
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Yasuda, T.; Yonemura, S.; Tani, A. Comparison of the Characteristics of Small Commercial NDIR CO2 Sensor Models and Development of a Portable CO2 Measurement Device. Sensors 2012, 12, 3641–3655. [Google Scholar] [CrossRef] [PubMed]
- García Mandayo, G.; Herrán, J.; Castro-Hurtado, I.; Castaño, E. Performance of a CO2 Impedimetric Sensor Prototype for Air Quality Monitoring. Sensors 2011, 11, 5047–5057. [Google Scholar] [CrossRef] [PubMed]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [PubMed]
- Tiemann, M. Porous Metal Oxides as Gas Sensors. Chem. Eur. J. 2007, 13, 8376–8388. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Chen, Y.; Zhang, G.; Sa, J. An Optical Fiber Sensor based on Absorption Spectroscopy for Carbon Monoxide Detection. In Proceedings of the 2010 International Conference On Computer Design and Appliations, Qinhuangdao, China, 25–27 June 2010.
- Mulrooney, J.; Clifford, J.; Fitzpatrick, C.; Chambers, P.; Lewis, E. A mid-infrared optical fibre sensor for the detection of carbon monoxide exhaust emissions. Sens. Actuators A Phys. 2008, 144, 13–17. [Google Scholar] [CrossRef]
- Liu, T.; Wang, C.; Wei, Y.; Zhao, Y.; Huo, D.; Shang, Y.; Wang, Z.; Ning, Y. Fibre optic sensors for mine hazard detection. J. Phys: Conf. Ser. 2009, 178. [Google Scholar] [CrossRef]
- Nakaema, W.M.; Hao, Z.Q.; Rohwetter, P.; Wöste, L.; Stelmaszczyk, K. PCF-Based Cavity Enhanced Spectroscopic Sensors for Simultaneous Multicomponent Trace Gas Analysis. Sensors 2011, 11, 1620–1640. [Google Scholar] [CrossRef] [PubMed]
- Langridge, J.M.; Laurila, T.; Watt, R.S.; Jones, R.L.; Kaminski, C.F.; Hult, J. Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source. Opt. Express 2008, 16, 10178–10188. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, C.M.B.; Franco, M.A.R.; Chesini, G.; Barretto, E.C.S.; Lwin, R.; Brito Cruz, C.H.; Large, M.C.J. Microstructured-core optical fibre for evanescent sensing applications. Opt. Express 2006, 14, 13056–13066. [Google Scholar] [CrossRef] [PubMed]
- Zaatar, Y.; Zaouk, D.; Bechara, J.; Khoury, A.; Llinaress, C.; Charles, J.P. Fabrication and characterization of an evanescent wave fiber optic sensor for air pollution control. Mater. Sci. Eng. 2000, B74, 296–298. [Google Scholar] [CrossRef]
- Singh, C.D.; Gupta, B.D. Detection of gases with porous-clad tapered fibers. Appl. Opt. 1995, 34, 1019–1023. [Google Scholar] [CrossRef] [PubMed]
- Jędrzejewski, K. Biconical fused taper—A universal fibre devices technology. Opto-Electron. Rev. 2000, 8, 153–159. [Google Scholar]
- Stewart, G.; Jin, W.; Culshaw, B. Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared. Sens. Actuators B Chem. 1997, 38–39, 42–47. [Google Scholar] [CrossRef]
- Arregui, F.J.; Liu, Y.; Matias, I.R.; Claus, R.O. Optical fiber humidity sensor using a nano Fabry–Perot cavity formed by the ionic self-assembly method. Sens. Actuators B Chem. 1999, 59, 54–59. [Google Scholar] [CrossRef]
- Pustelny, T.; Maciak, E.; Opilski, Z.; Bednorz, M. Optical interferometric structures for application in gas sensors. Opt. Appl. 2007, 37, 187–194. [Google Scholar]
- Shadaram, M.; Espada, L.; Martinez, J.; Garcia, F. Modeling and performance evaluation of ferrocene-based polymer clad tapered optical fiber gas sensors. Opt. Eng. 1998, 37, 1124–1129. [Google Scholar] [CrossRef]
- Shabaneh, A.; Girei, S.; Arasu, P.; Mahdi, M.; Rashid, S.; Paiman, S.; Yaacob, M. Dynamic Response of Tapered Optical Multimode Fiber Coated with Carbon Nanotubes for Ethanol Sensing Application. Sensors 2015, 15, 10452–10464. [Google Scholar] [CrossRef] [PubMed]
- Arregui, F.J.; Ciaurriz, Z.; Oneca, M.; Matias, I.R. An experimental study about hydrogels for the fabrication of optical fiber humidity sensors. Sens. Actuators B Chem. 2003, 96, 165–172. [Google Scholar] [CrossRef]
- Michie, W.C.; Culshaw, B.; Konstantaki, M.; McKenzie, I.; Kelly, S.; Graham, N.B.; Moran, C. Distributed pH and Water Detection Using Fiber-Optic Sensors and Hydrogels. J. Light. Technol. 1995, 13, 1415–1420. [Google Scholar] [CrossRef]
- Posch, H.E.; Leiner, M.J.P.; Wolfbeis, O.S. Towards a gastric pH-sensor: An optrode for the pH 0–7 range. Fresenius Zeitschrift Anal. Chem. 1989, 334, 162–165. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem. 2004, 76, 3269–3284. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, C.; Burke, C.S.; MacCraith, B.D. Optical Chemical Sensors. Chem. Rev. 2008, 108, 400–422. [Google Scholar] [CrossRef] [PubMed]
- Sipior, J.; Bambot, S.; Romauld, M.; Carter, G.M.; Lakowicz, J.R.; Rao, G. A Lifetime-Based Optical CO2 Gas Sensor with Blue or Red Excitation and Stokes or Anti-Stokes Detection. Anal. Biochem. 1995, 227, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Hernaez, M.; Zamarreño, C.R.; Goicoechea, J.; Matias, I.R.; Arregui, F.J. Nanostructured Materials in Optical Fiber Sensing. Open Opt. J. 2013, 7, 84–94. [Google Scholar] [CrossRef]
- Rovati, L.; Fabbri, P.; Ferrari, L.; Pilati, F. Plastic Optical Fiber pH Sensor Using a Sol-Gel Sensing Matrix. In Fiber Optic Sensors, 1st ed.; Yasin, M., Harum, S.W., Arof, H., Eds.; InTech: Rijeka, Croatia, 2012; pp. 415–438. [Google Scholar]
- Segawa, H.; Ohnishi, E.; Arai, Y.; Yoshida, K. Sensitivity of fiber-optic carbon dioxide sensors utilizing indicator dye. Sens. Actuators B Chem. 2003, 94, 276–281. [Google Scholar] [CrossRef]
- Panwar, N.; Tiwari, U.; Nidhi Khan, M.M.; Jain, S.C.; Garg, R.; Kapur, P. Long Period Fiber Grating Humidity Sensor with Gelatin/Cobalt Chloride coating. In Proceedings of the International Conference on Fiber Optics and Photonics, Madras, India, 9–12 December 2012.
- Konstantaki, M.; Pissadakis, S.; Pispas, S.; Madamopoulos, N.; Vainos, N.A. Optical fiber long-period grating humidity sensor with poly(ethylene oxide)cobalt chloride coating. Appl. Opt. 2006, 45, 4567–4571. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Duan, Y. A low cost fiber-optic humidity sensor based on silica sol-gel film. Sens. Actuators B Chem. 2011, 160, 1340–1345. [Google Scholar] [CrossRef]
- Kolpakov, S.A.; Gordon, N.T.; Mou, C.; Zhou, K. Toward a New Generation of Photonic Humidity Sensors. Sensors 2014, 14, 3986–4013. [Google Scholar] [CrossRef] [PubMed]
- Yimit, A.; Itoh, K.; Murabayashi, M. Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor. Sens. Actuators B Chem. 2003, 88, 239–245. [Google Scholar] [CrossRef]
- Timmer, B.; Olthuis, W.; van den Berg, A. Ammonia sensors and their applications—A review. Sens. Actuators B Chem. 2005, 107, 666–677. [Google Scholar] [CrossRef]
- Wolfbeis, O.S.; Weis, L.J. Fiber-optic Fluorosensor for Oxygen and Carbon Dioxide. Anal. Chem. 1988, 60, 2028–2030. [Google Scholar] [CrossRef]
- Chu, C.S.; Lo, Y.L.; Sung, T.W. Review on Recent Developments of Fluorescent Oxygen and Carbon Dioxide Optical Fiber Sensors. Photonic Sens. 2011, 1, 234–250. [Google Scholar] [CrossRef]
- Wolfbeis, O.S.; Kovacs, B.; Goswami, K.; Klainer, S.M. Fiber-Optic Fluorescence Carbon Dioxide Sensor for Environmental Monitoring. Mikrochim. Acta 1998, 129, 181–188. [Google Scholar] [CrossRef]
- Amao, Y.; Nakamura, N. Optical CO2 sensor with the combination of colorimetric change of α-naphtholphthalein and internal reference fluorescent porphyrin dye. Sens. Actuators B Chem. 2004, 100, 347–351. [Google Scholar] [CrossRef]
- Malins, C.; MacCraith, B.D. Dye-doped organically modified silica glass for fluorescence based carbon dioxide gas detection. Analyst 1998, 123, 2373–2376. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, B.; Zhang, H.; Li, Y.; Zhou, H.; Sun, H.; Zhang, W.; Zhao, Q. Relative Humidity Sensor Based on Tilted Fiber Bragg Grating With Polyvinyl Alcohol Coating. IEEE Photonics Technol. Lett. 2009, 21, 441–443. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Ma, W.; Russell, R.; Shakhsher, Z.M.; Grant, C.L.; Seitz, W.R.; Sundberg, D.C. Poly(viny1 alcohol) as a Substrate for Indicator Immobilization for Fiber-Optic Chemical Sensors. Anal. Chem. 1989, 61, 202–205. [Google Scholar] [CrossRef]
- Corres, J.M.; Arregui, F.J.; Matias, I.R. Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings. Sens. Actuators B Chem. 2007, 122, 442–449. [Google Scholar] [CrossRef]
- El Nahhal, I.M.; Zourab, S.M.; Kodeh, F.S.; Qudaih, A.I. Thin film optical BTB pH sensors using sol-gel method in presence of surfactants. Int. Nano Lett. 2012, 2. [Google Scholar] [CrossRef]
- Abdelghani, A.; Chovelon, J.M.; Jaffrezic-Renault, N.; Lacroix, M.; Gagnaire, H.; Veillas, C.; Berkova, B.; Chomat, M.; Matejec, V. Optical fibre sensor coated with porous silica layers for gas and chemical vapour detection. Sens. Actuators B Chem. 1997, 44, 495–498. [Google Scholar] [CrossRef]
- Yeh, T.S.; Chu, C.S.; Lo, Y.L. Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol–gel matrices. Sens. Actuators B Chem. 2006, 119, 701–707. [Google Scholar] [CrossRef]
- Renganathan, B.; Sastikumar, D.; Gobi, G.; Rajeswari Yogamalar, N.; Chandra Bose, A. Nanocrystalline ZnO coated fiber optic sensor for ammonia gas detection. Opt. Laser Technol. 2011, 43, 1398–1404. [Google Scholar] [CrossRef]
- El-Nasser, H.M. Effects of methyl red acidity and UV illumination on absorption coefficient of MR/PVA thin films. Phys. B 2011, 406, 1940–1943. [Google Scholar] [CrossRef]
- De Meyer, T.; Hemelsoet, K.; Van Speybroeck, V.; De Clerck, K. Substituent effects on absorption spectra of pH indicators: An experimental and computational study of sulfonphthaleine dyes. Dyes Pigment. 2014, 102, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Balderas-Hernandez, P.; Ramirez, M.T.; Rojas-Hernandez, A.; Gutierrez, A. Determination of pKa’s for thymol blue in aqueous medium: Evidence of dimer formation. Talanta 1998, 46, 1439–1452. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 86th ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Hołowacz, I.; Podbielska, H.; Bauer, J.; Ulatowska-Jarża, A. Viscosity, surface tension and refractive index of tetraethylorthosilicate-based sol-gel materials depending on ethanol content. Opt. Appl. 2005, 35, 691–699. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wysokiński, K.; Napierała, M.; Stańczyk, T.; Lipiński, S.; Nasiłowski, T. Study on the Sensing Coating of the Optical Fibre CO2 Sensor. Sensors 2015, 15, 31888-31903. https://doi.org/10.3390/s151229890
Wysokiński K, Napierała M, Stańczyk T, Lipiński S, Nasiłowski T. Study on the Sensing Coating of the Optical Fibre CO2 Sensor. Sensors. 2015; 15(12):31888-31903. https://doi.org/10.3390/s151229890
Chicago/Turabian StyleWysokiński, Karol, Marek Napierała, Tomasz Stańczyk, Stanisław Lipiński, and Tomasz Nasiłowski. 2015. "Study on the Sensing Coating of the Optical Fibre CO2 Sensor" Sensors 15, no. 12: 31888-31903. https://doi.org/10.3390/s151229890