A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging
Abstract
:1. Introduction
2. Theory and Simulations
2.1. Principle
2.2. Flow-Induced Temperature Variations
2.3. Temperature-Induced SPR Response Variations
2.4. Effect of the Liquid-Prism Temperature Difference
3. Experiments
3.1. SPR Imaging System and Sensing Chip
3.2. Experimental Procedures
3.3. Data Processing
4. Results and Discussion
4.1. SPR Response Distribution across the Sensing Surface
4.2. SPR Response Variations with Temperature
4.3. Flow-Induced SPR Response Variations
4.4. Influence of the Prism-Liquid Temperature Difference
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
SPR | surface plasmon resonance |
RI | refractive index |
RIRF | refractive index related factor |
CCD | charge coupled device |
PMMA | Polymethylmethacrylate |
References
- Li, Y.; Yan, G.; Zhang, L.; He, S. Microfluidic flowmeter based on micro “hot-wire” sandwiched Fabry-Perot interferometer. Opt. Express 2015, 23, 9483–9493. [Google Scholar] [CrossRef] [PubMed]
- Vilares, R.; Hunter, C.; Ugarte, I.; Aranburu, I.; Berganzo, J.; Elizalde, J.; Fernandez, L.J. Fabrication and testing of a SU-8 thermal flow sensor. Sens. Actuators B Chem. 2010, 147, 411–417. [Google Scholar] [CrossRef]
- Lien, V.; Vollmer, F. Microfluidic flow rate detection based on integrated optical fiber cantilever. Lab Chip 2007, 7, 1352–1356. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Ziaie, B.; Barocas, V.H. Lag-after-pulsed-separation microfluidic flowmeter for biomacromolecular solutions. Sens. Actuators B Chem. 2004, 99, 25–29. [Google Scholar] [CrossRef]
- Collins, J.; Lee, A.P. Microfluidic flow transducer based on the measurement of electrical admittance. Lab Chip 2004, 4, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, R.; Schlote-Holubek, K. A micro flow sensor from a polymer for gases and liquids. J. Micromech. Microeng. 2009, 19, 74006. [Google Scholar] [CrossRef]
- Ernst, H.; Jachimowicz, A.; Urban, G.A. High resolution flow characterization in Bio-MEMS. Sens. Actuators A Phys. 2002, 100, 54–62. [Google Scholar] [CrossRef]
- Caldas, P.; Jorge, P.A.; Rego, G.; Frazão, O.; Santos, J.L.; Ferreira, L.A.; Araújo, F. Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure. Appl. Opt. 2011, 50, 2738–2743. [Google Scholar] [CrossRef] [PubMed]
- Van Oudheusden, B.W. The determination of the effective ambient temperature for thermal flow sensors in a non-isothermal environment. Sens. Actuators A Phys. 1999, 72, 38–45. [Google Scholar] [CrossRef]
- Dijkstra, M.; de Boer, M.J.; Berenschot, J.W.; Lammerink, T.; Wiegerink, R.J.; Elwenspoek, M. Miniaturized thermal flow sensor with planar-integrated sensor structures on semicircular surface channels. Sens. Actuators A Phys. 2008, 143, 1–6. [Google Scholar] [CrossRef]
- Kim, T.H.; Kim, S.J. Development of a micro-thermal flow sensor with thin-film thermocouples. J. Micromech. Microeng. 2006, 16, 2502. [Google Scholar] [CrossRef]
- Berthet, H.; Jundt, J.; Durivault, J.; Mercier, B.; Angelescu, D. Time-of-flight thermal flowrate sensor for lab-on-chip applications. Lab Chip 2011, 11, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Grigoropoulos, C.P.; Greif, R. Infrared thermal velocimetry for nonintrusive flow measurement in silicon microfluidic devices. Rev. Sci. Instrum. 2003, 74, 2911–2917. [Google Scholar] [CrossRef]
- Kuo, J.T.; Yu, L.; Meng, E. Micromachined thermal flow sensors—A review. Micromachines 2012, 3, 550–573. [Google Scholar] [CrossRef]
- Wu, S.; Lin, Q.; Yuen, Y.; Tai, Y. MEMS flow sensors for nano-fluidic applications. Sens. Actuators A Phys. 2001, 89, 152–158. [Google Scholar] [CrossRef]
- Yan, W.; Liu, C.; Li, J.; Ma, L.; Niu, D. Thermal distribution microfluidic sensor based on silicon. Sens. Actuators B Chem. 2005, 108, 943–946. [Google Scholar]
- Sabaté, N.; Santander, J.; Fonseca, L.; Gràcia, I.; Cané, C. Multi-range silicon micromachined flow sensor. Sens. Actuators A Phys. 2004, 110, 282–288. [Google Scholar] [CrossRef]
- Kim, S.; Nam, T.; Park, S. Measurement of flow direction and velocity using a micromachined flow sensor. Sens. Actuators A Phys. 2004, 114, 312–318. [Google Scholar] [CrossRef]
- Hoera, C.; Skadell, M.M.; Pfeiffer, S.A.; Pahl, M.; Shu, Z.; Beckert, E.; Belder, D. A chip-integrated highly variable thermal flow rate sensor. Sens. Actuators B Chem. 2016, 225, 42–49. [Google Scholar] [CrossRef]
- Wagner, C.E.; Macedo, L.J.; Opdahl, A. Temperature gradient approach for rapidly assessing sensor binding kinetics and thermodynamics. Anal. Chem. 2015, 87, 7825–7832. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.K.; Gupta, B.D. Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor. JOSA A 2010, 27, 1743–1749. [Google Scholar] [CrossRef] [PubMed]
- Turhan-Sayan, G. Temperature effects on surface plasmon resonance: Design considerations for an optical temperature sensor. J. Lightwave Technol. 2003, 21, 805. [Google Scholar]
- Chiang, H.; Yeh, H.; Chen, C.; Wu, J.; Su, S.; Chang, R.; Wu, Y.; Tsai, D.P.; Jen, S.U.; Leung, P.T. Surface plasmon resonance monitoring of temperature via phase measurement. Opt. Commun. 2004, 241, 409–418. [Google Scholar] [CrossRef]
- Ekgasit, S.; Thammacharoen, C.; Yu, F.; Knoll, W. Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies. Anal. Chem. 2004, 76, 2210–2219. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ding, L.; Zhang, W.; Luo, Z.; Ou, H.; Zhang, E.; Yu, X. A high-throughput surface plasmon resonance biosensor based on differential interferometric imaging. Meas. Sci. Technol. 2012, 23, 65701. [Google Scholar] [CrossRef]
- Moreira, C.S.; Lima, A.; Neff, H.; Thirstrup, C. Temperature-dependent sensitivity of surface plasmon resonance sensors at the gold-water interface. Sens. Actuators B Chem. 2008, 134, 854–862. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, S.; Wang, P.; Liu, S.; Zhao, T.; Xu, S.; Guo, M.; Yu, X. A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging. Sensors 2016, 16, 964. https://doi.org/10.3390/s16070964
Deng S, Wang P, Liu S, Zhao T, Xu S, Guo M, Yu X. A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging. Sensors. 2016; 16(7):964. https://doi.org/10.3390/s16070964
Chicago/Turabian StyleDeng, Shijie, Peng Wang, Shengnan Liu, Tianze Zhao, Shanzhi Xu, Mingjiang Guo, and Xinglong Yu. 2016. "A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging" Sensors 16, no. 7: 964. https://doi.org/10.3390/s16070964
APA StyleDeng, S., Wang, P., Liu, S., Zhao, T., Xu, S., Guo, M., & Yu, X. (2016). A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging. Sensors, 16(7), 964. https://doi.org/10.3390/s16070964