A Denoising Scheme for Randomly Clustered Noise Removal in ICCD Sensing Image
Abstract
:1. Introduction
2. Framework of the Proposed Denoising Scheme for ICCD Sensing Image
3. The Denoising Scheme for ICCD Sensing Image
3.1. Patch Classification Based on Histogram Variance of Oriented Gradient
- (1)
- Slide a window of size s × s over each patch with step t, to obtain multiple blocks, calculate the magnitudes and orientations of the gradient feature in each block.
- (2)
- Divide the pixels in each block into k classes according to their orientations, then sum up the absolute magnitudes of the gradients of all pixels in each class to form a histogram with the results of all k classes.
- (3)
- Repeat the process above to form histograms for all blocks, then merge these histograms into one in the series.
- (4)
- Calculate the variance of the merged histogram.
- (5)
- Predefine a threshold value. If the variance is larger than the threshold, the patch is classified as a structure patch, otherwise, it is classified as a flat patch.
3.2. Denoising Method of Flat Patches in Pseudo-Time Domain
3.3. Denoising Method of Structure Patches Based on Its Sparse Representation
3.3.1. K-SVD Training and Noise Elements Elimination
3.3.2. Structure-Preserved Sparse Coding
3.4. Iterative Process
4. Experiments and Analysis
4.1. Parameter Determination in the Patch Classification Method
4.2. Verification of the Structure-Preserved Sparse Coding in a Dataset with Simulated Noise
4.2.1. Parameter Determination in the Structure-Preserved Sparse Coding
4.2.2. Results and Comparison
4.3. Verification of the Proposed Scheme on Real ICCD Sensing Images
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vigil, A.E. An update on low-light-level camera technology for underwater applications. In Proceedings of the MTS/IEEE Conference on Challenges of Our Changing Global Environment, OCEANS ’95, San Diego, CA, USA, 9–12 October 1995; Volume 1152, pp. 1157–1167.
- Brown, M.; Hamilton, S. Comparison of Gen II, Gen III filmed and Gen III filmless image intensified charge-coupled device cameras. In Proceedings of the 2003 Conference on Lasers and Electro-Optics Europe, CLEO/Europe 2003, Munich, Geramny, 22–27 June 2003.
- Nakaema, W.M.; Hao, Z.Q.; Rohwetter, P.; Woste, L.; Stelmaszczyk, K. Pcf-based cavity enhanced spectroscopic sensors for simultaneous multicomponent trace gas analysis. Sensors 2011, 11, 1620–1640. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, L.M.; Suhling, K. Photon counting imaging with an electron-bombarded pixel image sensor. Sensors 2016, 16, 617. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Tian, J.; Zhong, D.; Fu, C. Combining charge couple devices and rate sensors for the feedforward control system of a charge coupled device tracking loop. Sensors 2016, 16, 968. [Google Scholar] [CrossRef] [PubMed]
- Janesick, J.; Tower, J. Particle and photon detection: Counting and energy measurement. Sensors 2016, 16, 688. [Google Scholar] [CrossRef] [PubMed]
- Huiying, D.; Xuejing, Z. Detection and removal of rain and snow from videos based on frame difference method. In Proceedings of the 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, 23–25 May 2015; pp. 5139–5143.
- Son, C.-H.; Zhang, X.-P. Rain removal via shrinkage of sparse codes and learned rain dictionary. In Proceedings of the 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Seattle, WA, USA, 11–15 July 2016; pp. 1–6.
- Kang, L.W.; Lin, C.W.; Fu, Y.H. Automatic single-image-based rain streaks removal via image decomposition. IEEE Trans. Image Process. 2012, 21, 1742–1755. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.H.; Kang, L.W.; Lin, C.W.; Hsu, C.T. Single-frame-based rain removal via image decomposition. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 1453–1456.
- Huang, D.A.; Kang, L.W.; Yang, M.C.; Lin, C.W.; Wang, Y.C.F. Context-aware single image rain removal. In Proceedings of the 2012 IEEE International Conference on Multimedia and Expo, Melbourne, Australia, 9–13 July 2012; pp. 164–169.
- Zhang, W.; Quan, W.; Guo, L. Blurred star image processing for star sensors under dynamic conditions. Sensors 2012, 12, 6712–6726. [Google Scholar] [CrossRef] [PubMed]
- Bjorgan, A.; Randeberg, L.L. Real-time noise removal for line-scanning hyperspectral devices using a minimum noise fraction-based approach. Sensors 2015, 15, 3362–3378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, B.; Wang, S.; Liang, X.; Jiao, L.; Xu, C. Joint prior learning for visual sensor network noisy image super-resolution. Sensors 2016, 16, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, L.; Yan, R.; Li, X.; Liu, Y. From heuristic optimization to dictionary learning: A review and comprehensive comparison of image denoising algorithms. IEEE Trans. Cybern. 2014, 44, 1001–1013. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, Y.; Gao, X.; Tao, D.; Ning, B. A multi-frame image super-resolution method. Signal Process. 2010, 90, 405–414. [Google Scholar] [CrossRef]
- Norbert, W. The linear predictor and filter for multiple time series. In Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications; MIT Press: Cambridge, MA, USA, 1949; pp. 104–116. [Google Scholar]
- Mourabit, I.E.; Badri, A.; Sahel, A.; Baghdad, A. Comparative study of the least mean square and normalized least mean square adaptive filters for positioning purposes. In Proceedings of the 2014 Mediterranean Microwave Symposium (MMS2014), Marrakech, Morocco, 12–14 December 2014; pp. 1–4.
- Shao, L.; Zhang, H.; Haan, G.D. An overview and performance evaluation of classification-based least squares trained filters. IEEE Trans. Image Process. 2008, 17, 1772–1782. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, C.; Manduchi, R. Bilateral Filtering for Gray and Color Images. In Proceedings of the Sixth International Conference on Computer Vision, Bombay, India, 4–7 January 1998; pp. 839–846.
- Yang, G.Z.; Burger, P.; Firmin, D.N.; Underwood, S.R.; Longmore, D.B. Structure adaptive anisotropic filtering. In Proceedings of the Fifth International Conference on Image Processing and Its Applications, Edinburgh, UK, 4–6 July 1995; pp. 717–721.
- Takeda, H.; Farsiu, S.; Milanfar, P. Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 2007, 16, 349–366. [Google Scholar] [CrossRef] [PubMed]
- Bouboulis, P.; Slavakis, K.; Theodoridis, S. Adaptive kernel-based image denoising employing semi-parametric regularization. IEEE Trans. Image Process. 2010, 19, 1465–1479. [Google Scholar] [CrossRef] [PubMed]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 62, pp. 60–65.
- Thaipanich, T.; Oh, B.T.; Wu, P.H.; Xu, D.; Kuo, C.C.J. Improved image denoising with adaptive nonlocal means (ANL-means) algorithm. IEEE Trans. Consum. Electron. 2010, 56, 2623–2630. [Google Scholar] [CrossRef]
- Chao, P.; Au, O.C.; Jingjing, D.; Wen, Y.; Feng, Z. A fast NL-means method in image denoising based on the similarity of spatially sampled pixels. In Proceedings of the 2009 IEEE International Workshop on Multimedia Signal Processing, Rio de Janeiro, Brazil, 5–7 October 2009; pp. 1–4.
- Tschumperlé, D.; Brun, L. Non-local image smoothing by applying anisotropic diffusion pde’s in the space of patches. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 2957–2960.
- Yan, R.; Shao, L.; Cvetkovic, S.D.; Klijn, J. Improved nonlocal means based on pre-classification and invariant block matching. J. Display Technol. 2012, 8, 212–218. [Google Scholar] [CrossRef]
- Xie, Y.; Gu, S.; Liu, Y.; Zuo, W.; Zhang, W.; Zhang, L. Weighted schatten p-norm minimization for image denoising and background subtraction. IEEE Trans. Image Process. 2016, 25, 4842–4857. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, C.; Zhang, Y.; Liu, H. An efficient SVD-based method for image denoising. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 868–880. [Google Scholar] [CrossRef]
- Wang, M.; Yu, J.; Xue, J.H.; Sun, W. Denoising of hyperspectral images using group low-rank representation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4420–4427. [Google Scholar] [CrossRef]
- Simoncelli, E.P.; Adelson, E.H. Noise removal via bayesian wavelet coring. In Proceedings of the International Conference on Image Processing, Lausanne, Switzerland, 16–19 September 1996; Volume 371, pp. 379–382.
- Starck, J.-L.; Candes, E.J.; Donoho, D.L. The curvelet transform for image denoising. IEEE Trans. Image Process. 2002, 11, 670–684. [Google Scholar] [CrossRef] [PubMed]
- Do, M.N.; Vetterli, M. The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image Process. 2005, 14, 2091–2106. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Messali, Z.; Ouahabi, A.; Trepout, S.; Messaoudi, C.; Marco, S. Nonparametric denoising methods based on contourlet transform with sharp frequency localization: Application to low exposure time electron microscopy images. Entropy 2015, 17, 3461–3478. [Google Scholar] [CrossRef]
- Portilla, J.; Strela, V.; Wainwright, M.J.; Simoncelli, E.P. Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Image Process. 2003, 12, 1338–1351. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; Liu, H.; Zhang, X.; Zhang, J.; Ma, S.; Wu, F.; Gao, W. Image denoising via bandwise adaptive modeling and regularization exploiting nonlocal similarity. IEEE Trans. Image Process. 2016, 25, 5793–5805. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Yu, S.; Seo, D.; Jeong, J.; Paik, J. Push-broom-type very high-resolution satellite sensor data correction using combined wavelet-fourier and multiscale non-local means filtering. Sensors 2015, 15, 22826–22853. [Google Scholar] [CrossRef] [PubMed]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. [Google Scholar] [CrossRef] [PubMed]
- Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G.; Zisserman, A. Non-local sparse models for image restoration. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2272–2279.
- Dong, W.; Li, X.; Zhang, L.; Shi, G. Sparsity-Based image Denoising via Dictionary Learning and Structural Clustering. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 20–25 June 2011; pp. 457–464.
- Liu, S.; Jiao, L.; Yang, S. Hierarchical sparse learning with spectral-spatial information for hyperspectral imagery denoising. Sensors 2016, 16, 1718. [Google Scholar] [CrossRef] [PubMed]
- Gai, S.; Wang, L.; Yang, G.; Yang, P. Sparse representation based on vector extension of reduced quaternion matrix for multiscale image denoising. IET Image Process. 2016, 10, 598–607. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lin, C.-J. Libsvm. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Kang, L.W.; Yeh, C.H.; Chen, D.Y.; Lin, C.T. Self-learning-based signal decomposition for multimedia applications: A review and comparative study. In Proceedings of the 2014 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Chiang Mai, Thailand, 9–12 December 2014; pp. 1–9.
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 881, pp. 886–893.
- Tropp, J.A.; Gilbert, A.C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
- Han, J.; Yue, J.; Zhang, Y.; Bai, L. Local sparse structure denoising for low-light-level image. IEEE Trans. Image Process. 2015, 24, 5177–5192. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Chen, S.; Tan, X. Sparsity preserving projections with applications to face recognition. Pattern Recognit. 2010, 43, 331–341. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, T.; Gong, Y. Nonlinear learning using local coordinate coding. In Advances in Neural Information Processing Systems; Curran Associates Inc.: Vancouver, BC, Canada, 2009; pp. 2223–2231. [Google Scholar]
- Olshausen, B.A.; Field, D.J. Sparse coding with an overcomplete basis set: A strategy employed by v1? Vis. Res. 1997, 37, 3311–3325. [Google Scholar] [CrossRef]
- Kreutz-Delgado, K.; Murray, J.F.; Rao, B.D.; Engan, K.; Lee, T.W.; Sejnowski, T.J. Dictionary learning algorithms for sparse representation. Neural Comput. 2003, 15, 349–396. [Google Scholar] [CrossRef] [PubMed]
- Engan, K.; Aase, S.O.; Husoy, J.H. Frame based signal compression using method of optimal directions (mod). In Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, ISCAS ’99, Orlando, FL, USA, 30 May–2 June 1999; Volume 4, pp. 1–4.
- Murray, J.F.; Kreutz-Delgado, K. An improved focuss-based learning algorithm for solving sparse linear inverse problems. In Proceedings of the Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 4–7 November 2001; Volume 341, pp. 347–351.
- Kreutz-Delgado, K.; Rao, B.D. Focuss-Based Dictionary Learning Algorithms; The International Society for Optical Engineering: San Diego, CA, USA, 2000; pp. 459–473. [Google Scholar]
- Rao, K.R.; Yip, P. Discrete Cosine Transform: Algorithms, Advantages, Applications; Academic Press Professional, Inc.: San Diego, CA, USA, 1990. [Google Scholar]
- Zhou, M.; Chen, H.; Paisley, J.; Ren, L.; Sapiro, G.; Carin, L. Non-parametric bayesian dictionary learning for sparse image representations. In Advances in Neural Information Processing Systems; Curran Associates Inc.: Vancouver, BC, Canada, 2009; pp. 2295–2303. [Google Scholar]
k | t | s | DS | ||
---|---|---|---|---|---|
3 | 8 | 16 | 0.0339 | 0.0079 | 0.6220 |
3 | 16 | 16 | 0.0359 | 0.0082 | 0.6281 |
3 | 16 | 32 | 0.0205 | 0.0017 | 0.8468 |
3 | 32 | 32 | 0.0256 | 0.0025 | 0.8221 |
4 | 8 | 16 | 0.0259 | 0.0082 | 0.5191 |
4 | 16 | 16 | 0.0306 | 0.0082 | 0.5773 |
4 | 16 | 32 | 0.0171 | 0.0018 | 0.8095 |
4 | 32 | 32 | 0.0196 | 0.0023 | 0.7900 |
5 | 8 | 16 | 0.0279 | 0.0080 | 0.5443 |
5 | 16 | 16 | 0.0289 | 0.0081 | 0.5622 |
5 | 16 | 32 | 0.0166 | 0.0018 | 0.8043 |
5 | 32 | 32 | 0.0180 | 0.0023 | 0.7334 |
6 | 8 | 16 | 0.0250 | 0.0077 | 0.5290 |
6 | 16 | 16 | 0.0259 | 0.0078 | 0.5371 |
6 | 16 | 32 | 0.0148 | 0.0018 | 0.7831 |
6 | 32 | 32 | 0.0159 | 0.0022 | 0.7569 |
Threshold | 0.0020 | 0.0021 | 0.0022 | 0.0023 | 0.0024 | 0.0025 | 0.0026 | 0.0027 |
Classification precision (%) | 93.20 | 93.45 | 94.17 | 94.90 | 95.39 | 94.42 | 93.32 | 92.72 |
Boat | 21.4533 | 21.6566 | 21.4246 | 21.2539 | 20.7531 | 20.5860 |
Lena | 22.1502 | 22.2179 | 22.1357 | 21.8246 | 21.3215 | 21.1851 |
Peppers | 22.1224 | 22.1707 | 22.1109 | 22.0165 | 21.9634 | 21.7340 |
House | 22.7045 | 22.7334 | 22.7110 | 22.7031 | 22.6931 | 22.6879 |
Goldhill | 21.9759 | 22.0216 | 22.0093 | 21.9678 | 21.8985 | 21.8648 |
Cameraman | 22.2736 | 22.3714 | 22.2549 | 22.1832 | 22.0906 | 22.0154 |
Barbara | 21.4946 | 21.6002 | 21.5034 | 21.3674 | 20.9760 | 20.8354 |
Flinstones | 21.0398 | 21.0561 | 20.9341 | 20.7524 | 20.4086 | 20.2569 |
Average | 21.9018 | 21.9785 | 21.8855 | 21.7886 | 21.5131 | 21.3957 |
Noisy Image | Proposed | DCT | K-SVD | BP | |
---|---|---|---|---|---|
Boat | 19.5975 | 21.6566 | 20.3065 | 19.4485 | 20.5620 |
Lena | 19.4215 | 22.2179 | 20.1788 | 19.9263 | 20.6286 |
Peppers | 19.2094 | 22.1707 | 19.9566 | 20.0065 | 20.3398 |
House | 18.9383 | 22.7334 | 19.7697 | 21.0326 | 20.1685 |
Goldhill | 19.0536 | 22.0216 | 19.7694 | 19.4678 | 20.0385 |
Cameraman | 19.8617 | 22.3714 | 20.6232 | 20.4032 | 20.8906 |
Barbara | 19.7508 | 21.6002 | 20.4688 | 18.9671 | 20.8770 |
Flinstones | 19.7653 | 21.0561 | 20.1872 | 17.7524 | 20.0086 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Wang, Y.; Yang, M.; Zhang, X.; Zheng, N. A Denoising Scheme for Randomly Clustered Noise Removal in ICCD Sensing Image. Sensors 2017, 17, 233. https://doi.org/10.3390/s17020233
Wang F, Wang Y, Yang M, Zhang X, Zheng N. A Denoising Scheme for Randomly Clustered Noise Removal in ICCD Sensing Image. Sensors. 2017; 17(2):233. https://doi.org/10.3390/s17020233
Chicago/Turabian StyleWang, Fei, Yibin Wang, Meng Yang, Xuetao Zhang, and Nanning Zheng. 2017. "A Denoising Scheme for Randomly Clustered Noise Removal in ICCD Sensing Image" Sensors 17, no. 2: 233. https://doi.org/10.3390/s17020233
APA StyleWang, F., Wang, Y., Yang, M., Zhang, X., & Zheng, N. (2017). A Denoising Scheme for Randomly Clustered Noise Removal in ICCD Sensing Image. Sensors, 17(2), 233. https://doi.org/10.3390/s17020233