An Optoelectronic Equivalent Narrowband Filter for High Resolution Optical Spectrum Analysis
Abstract
:1. Introduction
2. Principle
2.1. Principle of OENF
2.2. Analysis of the Influence of OENF on OSA Results
3. Experiments and Discussion
3.1. Experimental Setups
3.2. Verification of the OENF’s Principle
3.3. Real-Time Wavelength Calibration of Swept LO
3.4. OSA of Fine Spectrum Structures of Optical Sensors Using the OENF System
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Trang, N.; Mohammad, A.H.; Yeong, M.J. Design and Implementation of a Novel Compatible Encoding Scheme in the Time Domain for Image Sensor Communication. Sensors 2016, 16, 736. [Google Scholar]
- Subias Domingo, J.M.; Pelayo, J.; Villuendas, F.; Heras, C.D.; Pellejer, E. Very high resolution optical spectrometry by stimulated Brillouin scattering. IEEE Photonics Technol. Lett. 2005, 17, 855–857. [Google Scholar] [CrossRef]
- Dong, Y.; Jiang, T.; Teng, L.; Zhang, H.; Chen, L.; Bao, X.; Lu, Z. Sub-MHz ultrahigh-resolution optical spectrometry based on Brillouin dynamic gratings. Opt. Lett. 2014, 39, 2967–2970. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; David, D.; Katia, G. Microwave-Based Microfluidic Sensor for Non-Destructive and Quantitative Glucose Monitoring in Aqueous Solution. Sensors 2016, 16, 1733. [Google Scholar]
- Marques, C.A.F.; Antunes, P.; Mergo, P.; Webb, D.J.; André, P. Chirped Bragg gratings in PMMA step-index polymer optical fiber. IEEE Photonics Technol. Lett. 2017. [Google Scholar] [CrossRef]
- Cui, J.; Feng, K.; Hu, Y.; Li, J.; Dang, H.; Tan, J. Double fiber probe with a single fiber Bragg grating based on the capillary-driven self-assembly fabrication method for dimensional measurement of micro parts. Opt. Express 2015, 23, 32926–32940. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Saez-Rodriguez, D.; Marques, C.; Bang, O.; Webb, D.J.; Mégret, P.; Caucheteur, C. Polarization effects in polymer FBGs: Study and use for transverse force sensing. Opt. Express 2015, 23, 4581–4590. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.A.F.; Peng, G.-D.; Webb, D.J. Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings. Opt. Express 2015, 23, 6058–6072. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.; Bilro, L.; Nogueira, R. Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds. Opt. Express 2015, 23, 10181–10187. [Google Scholar] [CrossRef] [PubMed]
- Guider, R.; Gandolfi, D.; Chalyan, T.; Pasquardini, L.; Samusenko, A.; Pucker, G.; Pederzolli, C.; Pavesi, L. Design and Optimization of SiON Ring Resonator-Based Biosensors for Aflatoxin M1 Detection. Sensors 2015, 15, 17300–17312. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Sampath, U.; Song, M. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop. Sensors 2015, 15, 18579–18586. [Google Scholar] [CrossRef] [PubMed]
- Preussler, S.; Zadok, A.; Wiatrek, A.; Tur, M.; Schneider, T. Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling. Opt. Express 2012, 20, 14734–14745. [Google Scholar] [CrossRef] [PubMed]
- Song, K.Y. Operation of Brillouin dynamic grating in single-mode optical fibers. Opt. Lett. 2011, 36, 4686–4688. [Google Scholar] [CrossRef] [PubMed]
- Preussler, S.; Schneider, T. Attometer resolution spectral analysis based on polarization pulling assisted Brillouin scattering merged with heterodyne detection. Opt. Express 2015, 23, 26879–26887. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Bao, X.; Chen, L.; Liang, H.; Dong, Y. Experimental study on stimulated Rayleigh scattering in optical fibers. Opt. Express 2010, 18, 22958–22963. [Google Scholar] [CrossRef] [PubMed]
- Szafraniec, B.; Lee, A.; Law, J.Y.; McAlexander, W.I.; Pering, R.D.; Tan, T.S.; Baney, D.M. Swept coherent optical spectrum analysis. IEEE Trans. Instrum. Meas. 2004, 53, 203–215. [Google Scholar] [CrossRef]
- Baney, D.M.; Szafraniec, B.; Motamedi, A. Coherent optical spectrum analyzer. IEEE Photonics Technol. Lett. 2002, 14, 355–357. [Google Scholar] [CrossRef]
- Szafraniec, B.; Law, J.Y.; Baney, D.M. Frequency resolution and amplitude accuracy of the coherent optical spectrum analyzer with a swept local oscillator. Opt. Lett. 2002, 27, 1896–1898. [Google Scholar]
- Van Deventer, M.O.; de Blok, C.M.; Park, C. High-dynamic-range heterodyne measurement of optical spectra. Opt. Lett. 1991, 16, 678–680. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, T.; Hagimoto, K. High resolution optical spectrum analyzer using a heterodyne detection technique. IEEE Instrum. Meas. Technol. 1994, 1, 234–237. [Google Scholar]
- Feng, K.; Cui, J.; Dang, H.; Zhao, S.; Wu, W.; Tan, J. Investigation and development of a high spectral resolution coherent optical spectrum analysis system. Opt. Express 2016, 24, 25389–25402. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.H.; Li, W.; Ke, J.H.; Zhang, H.G.; Man, J.W.; Liu, J.G. Optical spectral structure and frequency coherence. In Optoelectronic Devices and Properties; Sergiyenko, O., Ed.; InTech: Rijeka, Croatia, 2011; Volume 27, pp. 603–628. [Google Scholar]
- Rivera, E.; Thomson, D.J. Accurate strain measurements with fiber Bragg sensors and wavelength references. Smart Mater. Struct. 2006, 15, 325–330. [Google Scholar] [CrossRef]
- Gilbert, S.L.; Swann, W.C.; Wang, C.-M. Hydrogen Cyanide H13C14N Absorption Reference for 1530 nm to 1565 nm Wavelength Calibration—SRM 2519a; Report Number: 260-137; NIST Special Publication: Gaithersburg, MD, USA, 2005. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, K.; Cui, J.; Dang, H.; Wu, W.; Sun, X.; Jiang, X.; Tan, J. An Optoelectronic Equivalent Narrowband Filter for High Resolution Optical Spectrum Analysis. Sensors 2017, 17, 348. https://doi.org/10.3390/s17020348
Feng K, Cui J, Dang H, Wu W, Sun X, Jiang X, Tan J. An Optoelectronic Equivalent Narrowband Filter for High Resolution Optical Spectrum Analysis. Sensors. 2017; 17(2):348. https://doi.org/10.3390/s17020348
Chicago/Turabian StyleFeng, Kunpeng, Jiwen Cui, Hong Dang, Weidong Wu, Xun Sun, Xuelin Jiang, and Jiubin Tan. 2017. "An Optoelectronic Equivalent Narrowband Filter for High Resolution Optical Spectrum Analysis" Sensors 17, no. 2: 348. https://doi.org/10.3390/s17020348
APA StyleFeng, K., Cui, J., Dang, H., Wu, W., Sun, X., Jiang, X., & Tan, J. (2017). An Optoelectronic Equivalent Narrowband Filter for High Resolution Optical Spectrum Analysis. Sensors, 17(2), 348. https://doi.org/10.3390/s17020348