Dynamic Modelling of Embeddable Piezoceramic Transducers
Abstract
:1. Introduction
2. Dynamic Model of the Embeddable PZT Transducer
- The PZT patch is only subjected to the axial stress from the poling direction, and the stresses from other directions are neglected.
- The distribution of axial stress along the poling surface is homogeneous.
3. Numerical Simulation
4. Parametric Analysis
4.1. Effect of the Excitation Frequency
4.2. Effect of the Protecting Layer
4.3. Effect of the Waterproof Layer
4.4. Effect of the PZT Thickness
5. Experiment
5.1. Introduction
5.2. Effect of the Protecting Materials
5.3. Effect of the Waterproof Layer Materials
5.4. Effect of the Thickness of the Waterproof Layer
5.5. Effect of the PZT Thickness
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tseng, K.K.; Wang, L. Impedance-based method for nondestructive damage identification. J. Eng. Mech. 2005, 131, 58–64. [Google Scholar] [CrossRef]
- Wang, B.; Huo, L.; Chen, D.; Li, W.; Song, G. Impedance-Based Pre-Stress Monitoring of Rock Bolts Using a Piezoceramic-Based Smart Washer-A Feasibility Study. Sensors 2017, 17, 250. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Li, W.; Hei, C.; Song, G. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method. Sensors 2016, 16, 2083. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Li, W.; Wang, B.; Fu, Q.; Song, G. Measurement of the Length of Installed Rock Bolt Based on Stress Wave Reflection by Using a Giant Magnetostrictive (GMS) Actuator and a PZT Sensor. Sensors 2017, 17, 444. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Wang, T.; Yin, H.; Yang, D.; Li, Y. Bolt Looseness Detection Based on Piezoelectric Impedance Frequency Shift. Appl. Sci. 2016, 6, 298. [Google Scholar] [CrossRef]
- Song, G.; Gu, H.; Mo, Y.-L. Smart aggregates: Multi-functional sensors for concrete structures—A tutorial and a review. Smart Mater. Struct. 2008, 17, 033001. [Google Scholar] [CrossRef]
- Song, G.; Li, W.; Wang, B.; Ho, S.C.M. A Review of Rock Bolt Monitoring Using Smart Sensors. Sensors 2017, 17, 776. [Google Scholar] [CrossRef] [PubMed]
- Li, H.N.; Yi, T.H.; Ren, L.; Li, D.S.; Huo, L.S. Reviews on innovations and applications in structural health monitoring for infrastructures. Struct. Monit. Maint. 2014, 1, 1–45. [Google Scholar] [CrossRef]
- Gu, H.; Song, G.; Dhonde, H.; Mo, Y.; Yan, S. Concrete early-age strength monitoring using embedded piezoelectric transducers. Smart Mater. Struct. 2006, 15, 1837. [Google Scholar] [CrossRef]
- Song, G.; Olmi, C.; Gu, H. An overheight vehicle bridge collision monitoring system using piezoelectric transducers. Smart Mater. Struct. 2007, 16, 462–468. [Google Scholar] [CrossRef]
- Song, G.; Gu, H.; Mo, Y.L.; Hsu, T.T.C.; Dhonde, H. Concrete structural health monitoring using embedded piezoceramic transducers. Smart Mater. Struct. 2007, 16, 959–968. [Google Scholar] [CrossRef]
- Karayannis, C.G.; Voutetaki, M.E.; Chalioris, C.E.; Providakis, C.P.; Angeli, G.M. Detection of flexural damage stages for RC beams using piezoelectric sensors (PZT). Smart Struct. Syst. 2015, 15, 997–1018. [Google Scholar] [CrossRef]
- Chalioris, C.E.; Papadopoulos, N.A.; Angeli, G.M.; Karayannis, C.G.; Liolios, A.A.; Providakis, C.P. Damage Evaluation in Shear-Critical Reinforced Concrete Beam using Piezoelectric Transducers as Smart Aggregates. Open Eng. 2015, 5, 373–384. [Google Scholar] [CrossRef]
- Gu, H.; Moslehy, Y.; Sanders, D.; Song, G.; Mo, Y.L. Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations. Smart Mater. Struct. 2010, 19, 065026. [Google Scholar] [CrossRef]
- Yan, S.; Sun, W.; Song, G.; Gu, H.; Huo, L.S.; Liu, B.; Zhang, Y.G. Health monitoring of reinforced concrete shear walls using smart aggregates. Smart Mater. Struct. 2009, 18, 3149–3160. [Google Scholar] [CrossRef]
- Laskar, A.; Gu, H.; Mo, Y.L.; Song, G. Progressive collapse of a two-story reinforced concrete frame with embedded smart aggregates. Smart Mater. Struct. 2009, 18, 075001. [Google Scholar] [CrossRef]
- Howser, R.; Moslehy, Y.; Gu, H.; Dhonde, H.; Mo, Y.L.; Ayoub, A.; Song, G. Smart-aggregate-based damage detection of fiber-reinforced-polymer-strengthened columns under reversed cyclic loading. Smart Mater. Struct. 2011, 20, 075014. [Google Scholar] [CrossRef]
- An, Y.K.; Lim, H.J.; Min, K.K.; Yang, J.Y.; Sohn, H.; Chang, G.L. Application of Local Reference-Free Damage Detection Techniques to In Situ Bridges. J. Struct. Eng. 2014, 140, 440–446. [Google Scholar] [CrossRef]
- Kong, Q.; Wang, R.; Song, G.; Yang, Z.J.; Still, B. Monitoring the Soil Freeze-Thaw Process Using Piezoceramic-Based Smart Aggregate. J. Cold Regions Eng. 2014, 28, 971–984. [Google Scholar] [CrossRef]
- Kong, Q.; Hou, S.; Ji, Q.; Mo, Y.L.; Song, G. Very early age concrete hydration characterization monitoring using piezoceramic based smart aggregates. Smart Mater. Struct. 2013, 22, 085025. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, J.; Park, S.; Oh, T.K. Integrating embedded piezoelectric sensors with continuous wavelet transforms for real-time concrete curing strength monitoring. Struct. Infrastruct. Eng. 2015, 11, 897–903. [Google Scholar] [CrossRef]
- Jiang, T.; Kong, Q.; Wang, W.; Huo, L.; Song, G. Monitoring of Grouting Compactness in a Post-Tensioning Tendon Duct Using Piezoceramic Transducers. Sensors 2016, 16, 1343. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Li, B.; Song, G. Active Debonding Detection for Large Rectangular CFSTs Based on Wavelet Packet Energy Spectrum with Piezoceramics. J. Struct. Eng. ASCE 2013, 139, 1435–1443. [Google Scholar] [CrossRef]
- Li, W.; Kong, Q.; Ho, S.C.M.; Lim, I.; Mo, Y.L.; Song, G. Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures. Smart Mater. Struct. 2016, 25, 115031. [Google Scholar] [CrossRef]
- Shi, Y.; Ma, H.; Peng, L.; Song, G.; Wu, J. Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates. Sensors 2017, 17, 1641. [Google Scholar]
- Annamdas, V.G.M.; Rizzo, P. Monitoring concrete by means of embedded sensors and electromechanical impedance technique. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 1 April 2010; SPIE: Bellingham, WA, USA, 2010; p. 8. [Google Scholar]
- Annamdas, V.G.M.; Yang, Y.; Soh, C.K. Impedance based Concrete Monitoring using Embedded PZT Sensors. Int. J. Civil Struct. Eng. 2010, 1, 414–424. [Google Scholar]
- Yang, Y.W.; Liu, H.; Annamdas, V.G.M.; Soh, C.K. Monitoring damage propagation using PZT impedance transducers. Smart Mater. Struct. 2009, 18, 045003. [Google Scholar] [CrossRef]
- Divsholi, B.S.; Yang, Y.W. Combined embedded and surface-bonded piezoelectric transducers for monitoring of concrete structures. NDT E Int. 2014, 65, 28–34. [Google Scholar] [CrossRef]
- Dumoulin, C.; Karaiskos, G.; Sener, J.Y.; Deraemaeker, A. Online monitoring of cracking in concrete structures using embedded piezoelectric transducers. Smart Mater. Struct. 2014, 23, 115016. [Google Scholar] [CrossRef]
- Yang, Y.W.; Divsholi, B.S.; Soh, C.K. A Reusable PZT Transducer for Monitoring Initial Hydration and Structural Health of Concrete. Sensors 2010, 10, 5193–5208. [Google Scholar] [CrossRef] [PubMed]
- Annamdas, V.G.M.; Yang, Y.W. Practical implementation of piezo-impedance sensors in monitoring of excavation support structures. Struct. Control Health Monit. 2012, 19, 231–245. [Google Scholar] [CrossRef]
- Yang, Y.W.; Annamdas, V.G.M.; Wang, C.; Zhou, Y.X. Application of multiplexed FBG and PZT impedance sensors for health monitoring of rocks. Sensors 2008, 8, 271–289. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.W.; Divsholi, B.S. Sub-Frequency Interval Approach in Electromechanical Impedance Technique for Concrete Structure Health Monitoring. Sensors 2010, 10, 11644–11661. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, V.P.; Wang, G. Modeling and analysis of Lamb wave propagation in a beam under lead zirconate titanate actuation and sensing. J. Intell. Mater. Syst. Struct. 2015, 26, 1679–1698. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Hao, H.; Ou, J. Guided wave propagation and spectral element method for debonding damage assessment in RC structures. J. Sound Vib. 2009, 324, 751–772. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, H. Modelling of Guided Wave Propagation with Spectral Element: Application in Structural Engineering. Appl. Mech. Mater. 2014, 553, 687–692. [Google Scholar] [CrossRef]
- Li, J.; Hao, H.; Xia, Y.; Zhu, H.-P. Damage detection of shear connectors in bridge structures with transmissibility in frequency domain. Int. J. Struct. Stab. Dyn. 2014, 14, 1350061. [Google Scholar] [CrossRef]
- Yang, Y.W.; Hu, Y.H. Electromechanical impedance modeling of PZT transducers for health monitoring of cylindrical shell structures. Smart Mater. Struct. 2008, 17, 015005. [Google Scholar] [CrossRef]
- Lee, S.; Cho, B.C.; Park, H.C.; Goo, N.S.; Yoon, K.J. Piezoelectric Actuator–Sensor Analysis using a Three-Dimensional Assumed Strain Solid Element. J. Intell. Mater. Syst. Struct. 2004, 15, 329–338. [Google Scholar] [CrossRef]
- Pons, J.L.; Rodríguez, H.; Rocon, E.; Fernández, J.F.; Villegas, M. Practical consideration of shear strain correction factor and Rayleigh damping in models of piezoelectric transducers. Sens. Actuators A Phys. 2004, 115, 202–208. [Google Scholar] [CrossRef]
- Alam, N.; Kapuria, S. Nonlinear Zigzag Theory for Buckling of Hybrid Piezoelectric Rectangular Beams under Electrothermomechanical Loads. J. Eng. Mech. 2005, 131, 367–376. [Google Scholar]
- Chen, Y.; Wen, Y.; Li, P. Characterization of dissipation factors in terms of piezoelectric equivalent circuit parameters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 2367. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wen, Y.; Li, P. Characterization of PZT ceramic transducer embedded in concrete. Sens. Actuators A Phys. 2006, 128, 116–124. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, Y.; Li, P.; Jiang, D.; Guo, H. Smart Concrete with Embedded Piezoelectric Devices: Implementation and Characterization. J. Intell. Mater. Syst. Struct. 2007, 18, 265–274. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, H.B.; Ou, J.P. A PZT-based smart aggregate for compressive seismic stress monitoring. Smart Mater. Struct. 2012, 21, 5035. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, H.B.; Ou, J.P. A PZT-based smart aggregate for seismic shear stress monitoring. Smart Mater. Struct. 2013, 22, 065012. [Google Scholar] [CrossRef]
- Parashar, S.K.; Wagner, U.V.; Hagedorn, P. Finite element modeling of nonlinear vibration behavior of piezo-integrated structures. Comput. Struct. 2013, 119, 37–47. [Google Scholar] [CrossRef]
- Huang, J.L.; Clement, R.; Sun, Z.H.; Wang, J.Z.; Zhang, W.J. Global stiffness and natural frequency analysis of distributed compliant mechanisms with embedded actuators with a general-purpose finite element system. Int. J. Adv. Manuf. Technol. 2013, 65, 1111–1124. [Google Scholar] [CrossRef]
- Wang, F.Z.; Wang, H.; Sun, H.J.; Hu, S.G. Research on a 0–3 cement-based piezoelectric sensor with excellent mechanical-electrical response and good durability. Smart Mater. Struct. 2014, 23, 494–501. [Google Scholar] [CrossRef]
- Ai, D.; Zhu, H.; Luo, H. Sensitivity of embedded active PZT sensor for concrete structural impact damage detection. Constr. Build. Mater. 2016, 111, 348–357. [Google Scholar] [CrossRef]
- Kothari, A.; Kumar, A.; Kumar, R.; Vaish, R.; Chauhan, V.S. A study on epoxy—Based 1–3 piezoelectric composites using finite element method. Polym. Compos. 2016, 37, 1895–1905. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Soh, C.K. Embedded piezoelectric ceramic transducers in sandwiched beams. Smart Mater. Struct. 2006, 15, 538–549. [Google Scholar] [CrossRef]
- Shan, X.; Deng, J.; Song, R.; Xie, T. A Piezoelectric Energy Harvester with Bending–Torsion Vibration in Low-Speed Water. Appl. Sci. 2017, 7, 116. [Google Scholar] [CrossRef]
- Lu, S.; Boussaid, F. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting. Sensors 2015, 15, 29192–29208. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ramadass, Y.; Lang, J.; Ma, J.; Buss, D. Bias-Flip Technique for Frequency Tuning of Piezo-Electric Energy Harvesting Devices. J. Low Power Electron. Appl. 2013, 3, 1–3. [Google Scholar] [CrossRef]
- Yan, W.; Lim, C.W.; Cai, J.B.; Chen, W.Q. An electromechanical impedance approach for quantitative damage detection in Timoshenko beams with piezoelectric patches. Smart Mater. Struct. 2007, 16, 1390–1400. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, F.; Chen, J.; Wu, C.; Wen, D. Electromechanical Impedance Response of a Cracked Timoshenko Beam. Sensors 2011, 11, 7285–7301. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hu, Y.; Lu, Y. Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures. Sensors 2008, 8, 327–346. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, J.; Zhu, H. Embedded Electromechanical Impedance and Strain Sensors for Health Monitoring of a Concrete Bridge. Shock Vib. 2015, 2015, 821395. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, H.; Wang, D. A new three-dimensional electromechanical impedance model for an embedded dual-PZT transducer. Smart Mater. Struct. 2016, 25, 075002. [Google Scholar]
- Wang, D.; Song, H.; Zhu, H. Embedded 3D electromechanical impedance model for strength monitoring of concrete using a PZT transducer. Smart Mater. Struct. 2014, 23, 115019. [Google Scholar] [CrossRef]
- Hu, X.; Zhu, H.; Wang, D. A Study of Concrete Slab Damage Detection Based on the Electromechanical Impedance Method. Sensors 2014, 14, 19897–19909. [Google Scholar] [CrossRef] [PubMed]
- Baptista, F.G.; Budoya, D.E.; De, A.V.A.D.; Ulson, J.A.C. An Experimental Study on the Effect of Temperature on Piezoelectric Sensors for Impedance-Based Structural Health Monitoring. Sensors 2014, 14, 1208. [Google Scholar] [CrossRef] [PubMed]
- Karayannis, C.G.; Chalioris, C.E.; Angeli, G.M.; Papadopoulos, N.A.; Favvata, M.J.; Providakis, C.P. Experimental damage evaluation of reinforced concrete steel bars using piezoelectric sensors. Constr. Build. Mater. 2016, 105, 227–244. [Google Scholar] [CrossRef]
- Voutetaki, M.E.; Papadopoulos, N.A.; Angeli, G.M.; Providakis, C.P. Investigation of a new experimental method for damage assessment of RC beams failing in shear using piezoelectric transducers. Eng. Struct. 2016, 114, 226–240. [Google Scholar] [CrossRef]
- Chalioris, C.E.; Karayannis, C.G.; Angeli, G.M.; Papadopoulos, N.A.; Favvata, M.J.; Providakis, C.P. Applications of smart piezoelectric materials in a wireless admittance monitoring system (WiAMS) to Structures—Tests in RC elements. Case Stud. Constr. Mater. 2016, 5, 1–18. [Google Scholar] [CrossRef]
- Xu, D.; Banerjee, S.; Wang, Y.; Huang, S.; Cheng, X. Temperature and loading effects of embedded smart piezoelectric sensor for health monitoring of concrete structures. Construct. Build. Mater. 2015, 76, 187–193. [Google Scholar] [CrossRef]
- Pavelko, V. New applications of a model of electromechanical impedance for SHM. In Proceedings of the Spie Smart Structures & Materials + Nondestructive Evaluation & Health Monitoring, San Diego, CA, USA, 9 March 2014; p. 90640Y. [Google Scholar]
- Ong, C.W.; Yang, Y.; Wong, Y.T.; Bhalla, S.; Lu, Y.; Soh, C.K. The effects of adhesive on the electro-mechanical response of a piezoceramic transducer coupled smart system. In Smart Materials, Structures, and System, Pts 1 and 2; Mohan, S., Dattaguru, B., Gopalakrishnan, S., Eds.; SPIE: Bellingham, WA, USA, 2003; Volume 5062, pp. 241–247. [Google Scholar]
- Ong, C.W.; Lu, Y.; Yang, Y. The Influence of Adhesive Bond on the Electro-Mechanical Admittance Response of a Pzt Patch Coupled Smart Structure. In Structural Stability and Dynamics; World Scientific: Singapore, 2011; pp. 807–812. [Google Scholar]
- Madhav, A.V.G.; Soh, C.K. An electromechanical impedance model of a piezoceramic transducer-structure in the presence of thick adhesive bonding. Smart Mater. Struct. 2007, 16, 673–686. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Yang, Y.W.; Soh, C.K. Influence of loading on the electromechanical admittance of piezoceramic transducers. Smart Mater. Struct. 2007, 16, 1888–1897. [Google Scholar] [CrossRef]
PZT Patch | Waterproof Layer | Protecting Layer | |||
---|---|---|---|---|---|
hp | 0.001 m | hw | 0.0001 m | hc | 0.015 m |
ρp | 7600 kg/m3 | ρw | 1105 kg/m3 | ρc | 2700 kg/m3 |
Ep | 7.65 × 1010 N/m2 | Ew | 3 × 109 N/m2 | Ec | 5 × 1010 N/m2 |
Material | Destiny (kg/m2) | Elastic Modulus (GPa) | Ec/ρc |
---|---|---|---|
concrete | 2500 | 23 | 9.20 × 106 |
brass | 8000 | 70 | 11.41 × 106 |
granite | 3000 | 43 | 14.54 × 106 |
marble | 2700 | 55 | 20.37 × 106 |
Carbon steel | 7400 | 206 | 27.83 × 106 |
Specimen | Transducers | Protecting Layer Material | Waterproof Layer Material | Waterproof Layer Thickness | PZT Patch Thickness |
---|---|---|---|---|---|
Specimen 1 | SA-1 | carbon steel | epoxy resin | 0.4 mm | 1 mm |
SA-2 | marble | epoxy resin | 0.4 mm | 1 mm | |
Specimen 2 | SA-1 | marble | epoxy resin | 0.4 mm | 1 mm |
SA-2 | plexiglas | epoxy resin | 0.4 mm | 1 mm | |
Specimen 3 | SA-1 | marble | Silicon | 0.4 mm | 1 mm |
SA-2 | marble | epoxy resin | 0.4 mm | 1 mm | |
Specimen 4 | SA-1 | marble | Silicon | 0.4 mm | 1 mm |
SA-2 | marble | epoxy resin | 0.4 mm | 1 mm | |
Specimen 5 | SA-1 | marble | epoxy resin | 0.25 mm | 1 mm |
SA-2 | marble | epoxy resin | 0.45 mm | 1 mm | |
Specimen 6 | SA-1 | marble | epoxy resin | 0.25 mm | 1 mm |
SA-2 | marble | epoxy resin | 0.45 mm | 1 mm | |
Specimen 7 | SA-1 | marble | epoxy resin | 0.45 mm | 0.5 mm |
SA-2 | marble | epoxy resin | 0.45 mm | 1 mm | |
Specimen 8 | SA-1 | marble | epoxy resin | 0.45 mm | 0.5 mm |
SA-2 | marble | epoxy resin | 0.45 mm | 1 mm |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, L.; Li, X.; Li, H.; Wang, Z.; Song, G. Dynamic Modelling of Embeddable Piezoceramic Transducers. Sensors 2017, 17, 2801. https://doi.org/10.3390/s17122801
Huo L, Li X, Li H, Wang Z, Song G. Dynamic Modelling of Embeddable Piezoceramic Transducers. Sensors. 2017; 17(12):2801. https://doi.org/10.3390/s17122801
Chicago/Turabian StyleHuo, Linsheng, Xu Li, Hongnan Li, Zhijie Wang, and Gangbing Song. 2017. "Dynamic Modelling of Embeddable Piezoceramic Transducers" Sensors 17, no. 12: 2801. https://doi.org/10.3390/s17122801