Recent Progress in Biosensors for Environmental Monitoring: A Review
Abstract
:1. Introduction
2. Biosensors for Environmental Monitoring
2.1. Pesticides
2.1.1. Organophosphorous Pesticides
2.1.2. Other Pesticides
2.2. Pathogens
2.3. Potentially Toxic Elements
2.4. Toxins
2.5. Endocrine Disrupting Chemicals
2.6. Other Environmental Compounds
3. Future Perspectives and Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Justino, C.I.L.; Freitas, A.C.; Pereira, R.; Duarte, A.C.; Rocha-Santos, T.A.P. Recent developments in recognition elements for chemical sensors and biosensors. Trends Anal. Chem. 2015, 68, 2–17. [Google Scholar] [CrossRef]
- Lang, Q.; Han, L.; Hou, C.; Wang, F.; Liu, A. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide. Talanta 2016, 156, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Hassani, S.; Momtaz, S.; Vakhshiteh, F.; Maghsoudi, A.S.; Ganjali, M.R.; Norouzi, P.; Abdollahi, M. Biosensors and their applications in detection of organophosphorus pesticides in the environment. Arch. Toxicol. 2017, 91, 109–130. [Google Scholar] [CrossRef] [PubMed]
- Arduini, F.; Guidone, S.; Amine, A.; Palleschi, G.; Moscone, D. Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sens. Actuators B Chem. 2013, 179, 201–208. [Google Scholar] [CrossRef]
- Guo, L.; Li, Z.; Chen, H.; Wu, Y.; Chen, L.; Song, Z.; Lin, T. Colorimetric biosensor for the assay of paraoxon in environmental water samples based on the iodine-starch color reaction. Anal. Chim. Acta 2017, 967, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Asiri, A.M.; Liu, D.; Du, D.; Lin, Y. Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. Trends Anal. Chem. 2015, 54, 1–10. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Jin, W. Nanomaterilas based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ. Anal. Chem. 2017, 13, 10–23. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, W.; Lin, Y.; Du, D. The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion. Nanoscale 2013, 5, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Bahadir, E.B.; Sezgintürk, M.K. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal. Biochem. 2015, 478, 107–120. [Google Scholar] [CrossRef] [PubMed]
- OWLS 2006, OWLS APPLICATION NOTES NO-002. Label-Free Immunosensor for Herbicide Trifluralin Detection with OWLS. Available online: http://www.owls-sensors.com/pdf/Application-Note-2-Label-free-immunosensor-for-herbicide-trifluralin-detection.pdf (accessed on 2 December 2017).
- Soh, N.; Tokuda, T.; Watanabe, T.; Mishima, K.; Imato, T.; Masadome, T.; Asano, Y.; Okutani, S.; Niwa, O.; Brown, S. A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide. Talanta 2003, 60, 733–745. [Google Scholar] [CrossRef]
- Mauriz, E.; Calle, A.; Manclús, J.J.; Montoya, A.; Hildebrandt, A.; Barceló, D.; Lechuga, L.M. Optical immunosensor for fast and sensitive detection of DDT and related compounds in river water samples. Biosens. Bioelectron. 2007, 22, 1410–1418. [Google Scholar] [CrossRef] [PubMed]
- Arduini, F.; Forchielli, M.; Amine, A.; Neagu, D.; Cacciotti, I.; Nanni, F.; Moscone, D.; Palleschi, G. Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Microchim. Acta 2015, 182, 643–651. [Google Scholar] [CrossRef]
- Nunes, G.S.; Lins, J.A.P.; Silva, F.G.S.; Araujo, L.C.; Silva, F.E.P.S.; Mendonça, C.D.; Badea, M.; Hayat, A.; Marty, J.L. Design of a macroalgae amperometric biosensor; application to the rapid monitoring of organophosphate insecticides in an agroecosystem. Chemosphere 2014, 111, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Dong, S.; Wei, W.; Yuan, X.; Huang, T. Synthesis of reticulated hollow spheres structure NiCo2S4 and its application in organophosphate pesticides biosensor. Biosens. Bioelectron. 2017, 92, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Liu, K.; Liu, Y.; Dong, H.; Li, S. An novel acetylcholinesterase biosensor based on nano-porous pseudo carbon paste electrode modified with gold nanoparticles for detection of methyl parathion. J. Nanosci. Nanotechnol. 2016, 16, 9460–9467. [Google Scholar] [CrossRef]
- Mishra, A.; Kumar, J.; Melo, J.S. An optical microplate biosensor for the detection of methyl parathion pesticide using a biohybrid of Sphingomonas sp. cells-silica nanoparticles. Biosens. Bioelectron. 2017, 87, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Mayorga-Martinez, C.; Pino, F.; Kurbanoglua, S.; Rivas, L.; Ozkan, S.A.; Merkoci, A. Iridium oxide nanoparticles induced dual catalytic/inhibition based detection of phenol and pesticide compounds. J. Mater. Chem. B 2014, 2, 2233–2239. [Google Scholar] [CrossRef]
- Wei, M.; Zeng, G.; Lu, Q. Determination of organophosphate pesticides using an acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres. Microchim. Acta 2014, 181, 121–127. [Google Scholar] [CrossRef]
- Jiao, Y.; Hou, W.; Fu, J.; Guo, Y.; Sun, X.; Wang, X.; Zhao, J. A nanostructured electrochemical aptasensor for highly sensitive detection of chlorpyrifos. Sens. Actuators B Chem. 2017, 243, 1164–1170. [Google Scholar] [CrossRef]
- Yang, L.; Wang, G.; Liu, Y.; Wang, M. Development of a biosensor based on immobilization of acetylcholinesterase on NiO nanoparticles-carboxylic graphene-nafion modified electrode for detection of pesticides. Talanta 2013, 113, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wei, J.; Ren, X.; Ren, J.; Tang, F. A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosens. Bioelectron. 2013, 47, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Sundarmurugasan, R.; Gumpu, M.B.; Ramachandra, B.L.; Nesakumar, N.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. Simultaneous detection of monocrotophos and dichlorvos in orange samples using acetylcholinesterase-zinc oxide modified platinum electrode with linear regression calibration. Sens. Actuators B Chem. 2016, 230, 306–313. [Google Scholar] [CrossRef]
- Wei, M.; Wang, J. A novel acetylcholinesterase biosensor based on ionic liquids-AuNPs-porous carbon composite matrix for detection of organophosphate pesticides. Sens. Actuators B Chem. 2015, 211, 290–296. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, G.; Liu, M.; Fan, L.; Cao, T. Aptamer-based colorimetric sensing of acetamiprid in soil samples: Sensitivity, selectivity and mechanism. J. Hazard. Mater. 2013, 260, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Fei, A.; Liu, Q.; Huan, J.; Qian, J.; Dong, X.; Qiu, B.; Mao, H.; Wang, K. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens. Bioelectron. 2015, 70, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Du, X.; Liu, Q.; Zhou, L.; Dai, L.; Qian, J.; Wang, K. Silver nanoparticles anchored on nitrogen-doped graphene as a novel electrochemical biosensing platform with enhanced sensitivity for aptamer-based pesticide assay. Analyst 2015, 140, 6404–6411. [Google Scholar] [CrossRef] [PubMed]
- Madianos, L.; Tsekenis, G.; Skotadis, E.; Patsiouras, L.; Tsoukalas, D. A highly sensitive impedimetric aptasensor for the selective detection of acetamiprid and atrazine based on microwires formed by platinum nanoparticles. Biosens. Bioelectron. 2018, 101, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, W.-J.; Yang, Y.; Mao, L.-G.; Peng, Z. A label-free electrochemical immunosensor based on gold nanoparticles for direct detection of atrazine. Sens. Actuators B Chem. 2014, 191, 408–414. [Google Scholar] [CrossRef]
- Belkhamssa, N.; Justino, C.I.L.; Santos, P.S.M.; Cardoso, S.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T.; Ksibi, M. Label-free disposable immunosensor for detection of atrazine. Talanta 2016, 146, 430–434. [Google Scholar] [CrossRef] [PubMed]
- González-Techera, A.; Zon, M.A.; Molina, P.G.; Fernández, H.; González-Sapienza, G.; Arévalo, F.J. Development of a highly sensitive noncompetitive electrochemical immunosensor for the detection of atrazine by phage anti-immunocomplex assay. Biosens. Bioelectron. 2015, 64, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.M.B.F.; Barroso, M.F.; Morais, S.; de Lima-Neto, P.; Correia, A.N.; Oliveira, M.B.P.P.; Delerue-Matos, C. Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantification. Talanta 2013, 106, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.; Niu, X.; Chen, C.; Zhao, H.; Lan, M. Carbamate insecticide sensing based on acetylcholinesterase/Prussian blue-multi-walled carbon nanotubes/screen-printed electrodes. Anal. Lett. 2013, 46, 803–817. [Google Scholar] [CrossRef]
- Jeyapragasam, T.; Saraswathi, R. Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide-chitosan nanocomposite. Sens. Actuators B Chem. 2014, 191, 681–687. [Google Scholar] [CrossRef]
- Li, Z.; Qu, S.; Cui, L.; Zhang, S. Detection of carbofuran pesticide in seawater by using an enzyme biosensor. J. Coast. Res. 2017, 80, 1–5. [Google Scholar] [CrossRef]
- Santos, C.S.; Mossanha, R.; Pessôa, C.A. Biosensor for carbaryl based on gold modified with PAMAM-G4 dendrimer. J. Appl. Electrochem. 2015, 45, 325–334. [Google Scholar] [CrossRef]
- Gong, Z.; Guo, Y.; Sun, X.; Cao, Y.; Wang, X. Acetylcholinesterase biosensor for carbaryl detection based on interdigitated array microelectrodes. Bioprocess. Biosyst. Eng. 2014, 37, 1929–1934. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Fei, A.; Huan, J.; Mao, H.; Wang, K. Effective amperometric biosensor for carbaryl detection based on covalent immobilization acetylcholinesterase on multiwall carbon nanotubes/graphene oxide nanoribbons nanostructured. J. Electroanal. Chem. 2015, 740, 8–13. [Google Scholar] [CrossRef]
- Li, Y.; Shi, L.; Han, G.; Xiao, Y.; Zhou, W. Electrochemical biosensing of carbaryl based on acetylcholinesterase immobilized onto electrochemically inducing porous graphene oxide network. Sens. Actuators B Chem. 2017, 238, 945–953. [Google Scholar] [CrossRef]
- Foudeh, A.M.; Trigui, H.; Mendis, N.; Faucher, S.P.; Veres, T.; Tabrizian, M. Rapid and specific SPRi detection of L. pneumophila in complex environmental water samples. Anal. Bioanal. Chem. 2015, 407, 5541–5545. [Google Scholar] [CrossRef] [PubMed]
- Enrico, D.L.; Manera, M.G.; Montagna, G.; Cimaglia, F.; Chesa, M.; Poltronieri, P.; Santino, A.; Rella, R. SPR based immunosensor for detection of Legionella pneumophila in water samples. Opt. Commun. 2013, 294, 420–426. [Google Scholar] [CrossRef]
- Martín, M.; Salazar, P.; Jiménez, C.; Lecuona, M.; Ramos, M.J.; Ocle, J.; Riche, R.; Villalonga, R.; Campuzano, S.; Pingarrón, J.M.; et al. Rapid Legionella pneumophila determination based on disposable-shell Fe3O4@poly(dopamine) magnetic nanoparticles immunoplatform. Anal. Chim. Acta 2015, 887, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Meneghello, A.; Sonato, A.; Ruffato, G.; Zacco, G.; Romanato, F. A novel high sensitive surface plasmon resonance Legionella pneumophila sensing platform. Sens. Actuators B Chem. 2017, 250, 351–355. [Google Scholar] [CrossRef]
- Yilmaz, E.; Majidi, D.; Ozgur, E.; Denizli, A. Whole cell imprinting based Escherichia coli sensors: A study for SPR and QCM. Sens. Actuators B Chem. 2015, 209, 714–721. [Google Scholar] [CrossRef]
- Idil, N.; Hedström, M.; Denizli, A.; Mattiasson, B. Whole cell based microcontact imprinted capacitive biosensor for the detection of Escherichia coli. Biosens. Bioelectron. 2017, 87, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, X.; Zhang, L.; Gao, J.; Ma, Q. Electrochemiluminescence detection of Escherichia coli O157:H7 based on a novel polydopamine surface imprinted polymer biosensor. ACS Appl. Mater. Interfaces 2017, 9, 5430–5436. [Google Scholar] [CrossRef] [PubMed]
- Yoo, M.S.; Shin, M.; Kim, Y.; Jang, M.; Choi, Y.E.; Park, S.J.; Choi, J.; Lee, J.; Park, C. Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events. Chemosphere 2017, 175, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Long, F.; Zhu, A.; Shi, H.; Wang, H.; Liu, J. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Sci. Rep. 2013, 3, 2308. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-L.; Wang, Z.; Zhao, S.-N.; Meng, X.; Song, X.-Z.; Feng, J.; Song, S.-Y.; Zhang, H.-J. A metal-organic framework/DNA hybrid system as a novel fluorescent biosensor for mercury (II) ion detection. Chem. Eur. J. 2016, 22, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wang, Y.; Chu, Z.; Yin, Y.; Jiang, D.; Luo, J.; Ding, S.; Jin, W. A highly sensitive and reusable electrochemical mercury biosensor based on tunable vertical single-walled carbon nanotubes and a target recycling strategy. J. Mater. Chem. B 2017, 5, 1073–1080. [Google Scholar] [CrossRef]
- Yang, X.; He, Y.; Wang, X.; Yuan, R. A SERS biosensor with magnetic substrate CoFe2O4@Ag for sensitive detection of Hg2+. Appl. Surf. Sci. 2017, 416, 581–586. [Google Scholar] [CrossRef]
- Ravikumar, A.; Panneerselvam, P.; Radhakrishnan, K.; Morad, N.; Anuradha, C.D.; Sivanesan, S. DNAzyme based amplified biosensor on ultrasensitive fluorescence detection of Pb(II) ions from aqueous system. J. Fluoresc. 2017, 27, 2101–2109. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Zhong, Y.; Chen, R.; Wang, F.; Liu, Y.; Luo, D. A“turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles. Sens. Actuators B Chem. 2018, 225, 1577–1581. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Gao, T.; Zhang, T.; Xu, L.; Wang, B.; Wang, J.; Pei, R. Selection of DNA aptamers for the development of light-up biosensor to detect Pb(II). Sens. Actuators B Chem. 2018, 254, 214–221. [Google Scholar] [CrossRef]
- Eissa, S.; Siaj, M.; Zourob, M. Aptamer-based competitive electrochemical biosensor for brevetoxin-2. Biosens. Bioelectron. 2015, 69, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Fang, J.; Cao, D.; Li, H.; Su, K.; Hu, N.; Wang, P. An improved functional assay for rapid detection of marine toxins, saxitoxin and brevetoxin using a portable cardiomyocyte-based potential biosensor. Biosens. Bioelectron. 2015, 72, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zheng, X.; Wu, J. A biolayer interferometry-based competitive biosensor for rapid and sensitive detection of saxitoxin. Sens. Actuators B Chem. 2017, 246, 169–174. [Google Scholar] [CrossRef]
- Zhang, W.; Han, C.; Jia, B.; Saint, C.; Nadagouda, M.; Falaras, P.; Sygellou, L.; Vogiazi, V.; Dionysiou, D.D. A 3D graphene-based biosensor as an early microcystin-LR screening tool in sources of drinking water supply. Electrochim. Acta 2017, 236, 319–327. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, M.; Li, H.; Yan, F.; Pang, P.; Wang, H.; Wu, Z.; Yang, W. A molybdenum disulfide/gold nanorod composite-based electrochemical immunosensor for sensitive and quantitative detection of microcystin-LR in environmental samples. Sens. Actuators B Chem. 2017, 244, 606–615. [Google Scholar] [CrossRef]
- Catanante, G.; Espin, L.; Marty, J.-L. Sensitive biosensor based on recombinant PP1α for microcystin detection. Biosens. Bioelectron. 2015, 67, 700–707. [Google Scholar] [CrossRef] [PubMed]
- McNamee, S.E.; Elliott, C.T.; Delahaut, P.; Campbell, K. Multiplex biotoxin surface plasmon resonance method for marine biotoxins in algal and seawater samples. Environ. Sci. Pollut. Res. 2013, 20, 6794–6807. [Google Scholar] [CrossRef] [PubMed]
- Antunes, J.; Justino, C.; da Costa, J.P.; Cardoso, S.; Duarte, A.C.; Rocha-Santos, T. Graphene immunosensors for okadaic acid detection in seawater. Microchem. J. 2017. under review. [Google Scholar]
- Pan, Y.; Zhou, J.; Su, K.; Hu, N.; Wang, P. A novel quantum dot fluorescence immunosensor based on magnetic beads and portable flow cytometry for detection of okadaic acid. Procedia Technol. 2017, 27, 214–216. [Google Scholar] [CrossRef]
- Marques, I.; da Costa, J.P.; Justino, C.; Santos, P.; Duarte, K.; Freitas, A.; Cardoso, S.; Duarte, A.; Rocha-Santos, T. Carbon nanotube field effect biosensor for the detection of toxins in seawater. J. Environ. Anal. Chem. 2017, 97, 597–605. [Google Scholar] [CrossRef]
- Colas, F.; Crassous, M.-P.; Laurent, S.; Litaker, R.W.; Rinnert, E.; Le Gall, E.; Lunven, M.; Delauney, L.; Compère, C. A surface plasmon resonance system for the underwater detection of domoic acid. Limnol. Oceanogr. Methods 2016, 14, 456–465. [Google Scholar] [CrossRef]
- Ragavan, K.V.; Selvakumar, L.S.; Thakur, M.S. Functionalized aptamers as nano-bioprobes for ultrasensitive detection of bisphenol-A. Chem. Commun. 2013, 49, 5960–5962. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, N.; Long, F.; He, M.; Shi, H.-C.; Gu, A.Z. A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples. Environ. Sci. Process Impacts 2014, 16, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- He, M.-Q.; Wang, K.; Wang, J.; Yu, Y.-L.; He, R.-H. A sensitive aptasensor based on molybdenum carbide nanotubes and label-free aptamer for detection of bisphenol A. Anal. Bioanal. Chem. 2017, 409, 1797–1803. [Google Scholar] [CrossRef] [PubMed]
- Belkhamssa, N.; da Costa, J.P.; Justino, C.I.L.; Santos, P.S.M.; Cardoso, S.; Duarte, A.C.; Rocha-Santos, T.; Ksibi, M. Development of an electrochemical biosensor for alkylphenol detection. Talanta 2016, 158, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhao, G.; Shi, H.; Liu, M.; Wang, Y.; Ke, H. A femtomolar level and highly selective 17β-estradiol photoelectrochemical aptasensor applied in environmental water samples analysis. Environ. Sci. Technol. 2014, 48, 5754–5761. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Liu, C.C. Detection of 17β-estradiol in environmental samples and for health care using a single-use, cost-effective biosensor based on Differential Pulse Voltammetry (DPV). Biosensors 2017, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.C.; Bacher, G.; Bhand, S. A label free immunosensor for ultrasensitive detection of 17β-estradiol in water. Electrochim. Acta 2017, 232, 30–37. [Google Scholar] [CrossRef]
- EU. EU Legislation on MRLs. 2017. Available online: https://ec.europa.eu/food/plant/pesticides/max_residue_levels/eu_rules_en (accessed on 24 October 2017).
- Rotariu, L.; Zamfir, L.G.; Bala, C. A rational design of the multiwalled carbon nanotubes-7,7,8,8-tetracyanoquinodimethan sensor for sensitive detection of acetylcholinesterase inhibitors. Anal. Chim. Acta 2012, 748, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Zhang, Y.; Chang, K.; Gai, X.; Jing, Y.; Li, S.; Liu, L.; Qu, G. Ferrocene-phenylalanine hydrogels for immobilization of acetylcholinesterase and detection of chlorpyrifos. J. Electroanal. Chem. 2015, 746, 68–74. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 149/2008 of 29 January 2008 Amending Regulation (EC) No 396/2005 of the European Parliament and of the Council by Establishing Annexes II, III and IV Setting Maximum Residue Levels for Products Covered by Annex I Thereto. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32008R0149 (accessed on 17 October 2017).
- Salvador, J.P.; Marco, M.P. Amperometric biosensor for continuous monitoring Irgarol 1051 in sea water. Electroanalysis 2016, 28, 1833–1838. [Google Scholar] [CrossRef]
- USEPA. Mercury Update: Impact of Fish Advisories; EPA Fact Sheet EPA-823-F-01-011; EPA, Office of Water: Washington, DC, USA, 2001.
- Zhang, C.; Zhou, Y.; Tang, L.; Zeng, G.; Zhang, J.; Peng, B.; Xie, X.; Lai, C.; Long, B.; Zhu, J. Determination of Cd2+ and Pb2+ based on mesoporous carbon nitride/self-doped polyaniline nanofibers and square wave anodic stripping voltammetry. Nanomaterials 2016, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Sang, S.; Jian, A.; Gao, S.; Duan, Q.; Ji, J.; Zhang, Q.; Zhang, W. A bovine serum albumin-coated magnetoelastic biosensor for the wireless detection of heavy metal ions. Sens. Actuators B Chem. 2018, 256, 318–324. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Zhang, L.; Ge, S.; Yan, M.; Yu, J. Steric paper based ratio-type electrochemical biosensor with hollow-channel for sensitive detection of Zn2+. Sci. Bull. 2017, 62, 1114–1121. [Google Scholar] [CrossRef]
- EPA. National Recommended Water Quality Criteria—Aquatic Life Criteria Table. Available online: http://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table (accessed on 24 October 2017).
- Akki, S.U.; Werth, C.J.; Silverman, S.K. Selective aptamers for detection of estradiol and ethynylestradiol in natural waters. Environ. Sci. Technol. 2015, 49, 9905–9913. [Google Scholar] [CrossRef] [PubMed]
- Orozco, J.; Villa, E.; Manes, C.; Medlin, L.K.; Guillebault, D. Electrochemical RNA genosensors for toxic algal species: Enhancing selectivity and sensitivity. Talanta 2016, 161, 560–566. [Google Scholar] [CrossRef] [PubMed]
- McPartlin, D.A.; Loftus, J.H.; Crawley, A.S.; Silke, J.; Murphy, C.S.; O’Kennedy, R.J. Biosensors for the monitoring of harmful algal blooms. Curr. Opin. Biotechnol. 2017, 45, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Bidmanova, S.; Kotlanova, M.; Rataj, T.; Damborsky, J.; Trtilek, M.; Prokop, Z. Fluorescence-based biosensor for monitoring of environmental pollutants: From concepts to field application. Biosens. Bioelectron. 2016, 84, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Macias, D.; Dean, Z.S.; Kreger, N.R.; Wong, P.K. A UAV-mounted whole cell biosensor system for environmental monitoring applications. IEEE Trans. Nanobiosci. 2015, 14, 811–817. [Google Scholar] [CrossRef] [PubMed]
Analyte/Pollutant Detected | Biosensor Type | Recognition Element | Electrode/Sensing Material | Reproducibility | Limit of Detection | Response Range | Recovery (%) | References |
---|---|---|---|---|---|---|---|---|
Pesticides | ||||||||
Paraoxon | Electrochemical (amperometric) | Enzyme (AChE 1) | Gold SPE 2 and cysteamine SAM 3 | 5% (n = 4) | 2 ppb (*1) | Up to 40 ppb | 97 ± 5% | [4] |
Electrochemical (voltammetric) | Enzyme (butyrylcholinesterase) | SPE 2 with carbon black nanoparticles | 5 µg L−1 (*1) | Up to 30 µg L−1 | 96 ± 2% | [13] | ||
Optical (colorimetric) | Enzyme (AChE 1 and ChO 4) | Iodine-starch | 4.7 ppb (*2) | 10–400 ppb | 88–110% | [5] | ||
Electrochemical (amperometric) | Enzyme (AChE 1) | GCE 5 and gold nanorods | <6% (n = 6) | 0.7 nM (*1) | 1 nM–5 µM | 96–98% | [2] | |
Methyl parathion | Electrochemical (impedimetric) | Enzyme (hydrolase) | SPE 2 with Fe3O4 and gold nanoparticles | 7.8% (n = 6) | 0.1 ng mL−1 | 0.5–1000 ng mL−1 | [8] | |
Electrochemical (amperometric) | Enzyme (AChE 1) | Graphite and macroalgae | 1.5–1.8 ng mL−1 (*1) | 0–1500 ng mL−1 | [14] | |||
Electrochemical (impedimetric) | Enzyme (AChE 1) | Carbon paste electrode and reticulated spheres structures of NiCo2S4 | 5.3% (n = 6) | 0.42 pg mL−1 (*3) | 1.0 pg mL−1–10 ng mL−1 | [15] | ||
Electrochemical | Enzyme (AChE 1) | Carbon paste electrode with chitosan, gold nanoparticles, and Nafion | 5 fg mL−1 | 0.01 pg mL−1–10 ng mL−1 | [16] | |||
Optical | Sphingomonas sp. cells | Microplate with silica nanoparticles and PEi 6 hybrid | 0.01 ppm | 0.1–1 ppm | [17] | |||
Chlorpyrifos | Electrochemical (impedimetric) | Enzyme (tyrosinase) | SPCE 7 and IrOx nanoparticles | <10% (n = 3) | 3 nM | 0.01–0.1 µM | 90 ± 9.6% | [18] |
Electrochemical (voltammetric) | Enzyme (AChE 1) | Boron-doped diamond electrode with gold nanoparticles and carbon spheres | 7.3% (n = 6) | 0.13 pM (*4) | 0.01 nM–0.1 µM | 82.4–91.2% | [19] | |
Electrochemical (voltammetric) | Aptamers (#1) | Carbon black and GO 8/Fe3O4 | 4.3% (n = 5) | 94 pM (*3) | 0.29 nM–0.29 mM | 96–106% | [20] | |
Electrochemical (amperometric) | Enzyme (AChE 1) | GCE 5 with NiO nanoparticles-carboxylic graphene-Nafion | 6.5% (n = 6) | 0.05 pM (*2) | 0.1–10 nM | 93.0–105.2% | [21] | |
Dichlorvos | Optical (fluorescence) | Enzyme (AChE 1 and ChO 4) | QD 9 and acetylcholine | 2.2% (n = 6) | 4.49 nM (*1) | 4.49–6780 nM | 97.1–100.9% | [22] |
Electrochemical (voltammetric) | Enzyme (AChE 1) | Platinum electrode with ZnO | 12 pM (*1) | 98.5–100.8% | [23] | |||
Electrochemical (impedimetric) | Enzyme (AChE 1) | Ionic liquids-gold nanoparticles porous carbon composite | 6.5% (n = 5) | 0.3 pM (*1) | 0.45 pM–4.5 nM | 80.8–93.1% | [24] | |
Acetamiprid | Optical (colorimetric) | Aptamers (#2) | Gold nanoparticles | 5 nM (*3) | 75 nM–7.5 µM | [25] | ||
Electrochemical (impedimetric) | Aptamers (#3) | Gold nanoparticles, MWCNT 10, and rGO 11 nanoribbons | 17 fM (*3) | 50 fM–10 µM | 96.0–106.6% | [26] | ||
Electrochemical (impedimetric) | Aptamers (#3) | Silver nanoparticles and nitrogen-doped GO 8 | 6.9% (n = 5) | 33 fM (*3) | 0.1 pM–5 nM | 98.8–106.5% | [27] | |
Electrochemical (impedimetric) | Aptamers (#3) | Platinum nanoparticles | 1 pM | 10 pM–100 nM | 86–109% | [28] | ||
Atrazine | Electrochemical (voltammetric) | Antibodies (monoclonal) | Gold nanoparticles | 2.7–9.2% (n = 3) | 0.016 ng mL−1 (*3) | 0.05–0.5 ng mL−1 | 95.5–119.9% | [29] |
Electrochemical (FET 17) | Antibodies (monoclonal) | SWCNT | 1.86 ± 0.26% | 0.01 ng mL−1 | 0.001–10 ng mL−1 | 87.3–108% | [30] | |
Electrochemical (impedimetric) | Aptamers (#4) | Platinum nanoparticles | 2.2 pg mL−1 | 22 pg mL−1–0.22 µg mL−1 | 79–113% | [28] | ||
Electrochemical (amperometric) | Phage/antibody (monoclonal) complex | Magnetic beads functionalized with protein G | 0.2 pg mL−1 | 0.0001–0.001 pg mL−1 | 96–99% | [31] | ||
Pirimicarb | Electrochemical (voltammetric) | Enzyme (laccase) | Carbon paste electrode with MWCNT 10 | 4.6% (n = 5) | 43 µg L−1 | 0.24–2.7 mg L−1 | [32] | |
Electrochemical (amperometric) | Enzyme (AChE 1) | Prussian blue-MWCNT 10 SPE 2 | 53.2 ng L−1 (*5) | 1 µg L−1–1 g L−1 | [33] | |||
Carbofuran | Electrochemical (voltammetric) | Enzyme (AChE 1) | IrOx-chitosan nanocomposite | 5.4% (n = 5) | 3.6 nM (*2) | 5–90 nM | [34] | |
Electrochemical (amperometric) | Enzyme (AChE 1) | GCE 5 with GO 8 and MWCNT10 | 136 pM | 68–3672 pM | 102.38 ± 2.05% | [35] | ||
Electrochemical (amperometric) | Enzyme (AChE 1) | GCE 5 with NiO nanoparticles-carboxylic graphene-Nafion composite | 6.5% (n = 6) | 0.5 pM (*2) | 1 pM–0.1 nM | 93.0–105.2% | [21] | |
Carbaryl | Electrochemical (impedimetric) | Enzyme (AChE 1) | Gold electrode with cysteamine SAM 3 | 32 nM | 1–9 µM | [36] | ||
Electrochemical (impedimetric) | Enzyme (AChE 1) | Interdigitated array microelectrodes with chitosan | 4.8% | 3.87 nM | 4.96–496 nM | [37] | ||
Electrochemical (amperometric) | Enzyme (AChE 1) | MWCNT 10 and GO 8 nanoribbons structure | 7.3% (n = 4) | 1.7 nM (*3) | 5–5000 nM | 95.5–96.8% | [38] | |
Electrochemical (amperometric) | Enzyme (AChE 1) | Porous GCE 5 with GO 8 network | 0.74 nM (*3) | 1.49–30.3 nM | 98.3–102.2% | [39] | ||
Pathogens | ||||||||
Legionella pneumophila | Optical (SPR 12) | Nucleic acids (#5) | Gold substrate with streptavidin-conjugated QD 9 | 104 CFU mL−1 | 104–108 CFU mL−1 | [40] | ||
Optical (SPR 12) | Antibody (polyclonal) | Gold substrate with protein A SAM 3 | 103 CFU mL−1 | 103–106 CFU mL−1 | [41] | |||
Electrochemical (amperometric) | Antibody (polyclonal) | SPCE 7 with Fe3O4@polydopamine complex | 5.9% (n = 7) | 104 CFU mL−1 | 104–108 CFU mL−1 | [42] | ||
Optical (SPR 12) | Antibody (polyclonal) | Gold gratings substrate | 10 CFU mL−1 | [43] | ||||
Escherichia coli | Optical (SPR 12) | Polymerizable form of histidine | Gold substrate | 3.72 × 105 CFU mL−1 | [44] | |||
Piezoelectric (QCM 13) | 1.54 × 106 CFU mL−1 | |||||||
Electrochemical (capacitive) | Polymerizable form of histidine | Gold electrode | 70 CFU mL−1 | 102–107 CFU mL−1 | 81–97% | [45] | ||
Optical (electrochemiluminescence) | Antibodies (polyclonal) | GCE 5 with polydopamine imprinted polymer and nitrogen-doped QD 9 | 8 CFU mL−1 | 10–107 CFU mL−1 | [46] | |||
Bacillus subtilis | Electrochemical (amperometric) | Antibodies (polyclonal) | Gold electrode with SWCNT 14 | 102 CFU mL−1 | 102–1010 CFU mL−1 | [47] | ||
Potentially Toxic Elements | ||||||||
Hg2+ | Optical (evanescent-wave optical fibre) | Nucleic acids (#6) | Optical fibre platform | 1.2 nM (*2) | 0–1000 nM | [48] | ||
Optical (fluorescence) | DNA | MOF 15 (UiO-66-NH2) | 17.6 nM | 0.14 µM | [49] | |||
Electrochemical (voltammetric) | Nucleic acids (#7) | Gold substrate with vertically aligned SWCNT | 3.4% | 3 fM (*3) | 10 fM–1 µM | [50] | ||
Optical (SERS 16) | Nucleic acids (#8) | SWCNT 11 and CoFe3O4@Ag substrate | <4% (n = 15) | 0.84 pM (*3) | 1 pM–100 nM | 90.50–116.7% | [51] | |
Pb2+ | Optical (fluorescence) | DNAzymes (#9) | Carboxylated magnetic beads | 5 nM (*3) | 0–50 nM | 96.1–101% | [52] | |
Optical (fluorescence) | DNAzyme (#10) | Graphene QD 9 and gold nanoparticles | 16.7 nM | 50 nM–4 µM | [53] | |||
Optical (fluorescence) | Aptamers (#11) | Micro-spin column | <5% (n = 6) | 61 nM (*3) | 100–1000 nM | 95.2–109.3% | [54] | |
Toxins | ||||||||
Brevetoxin-2 | Electrochemical (impedimetric) | Aptamers (#12) | Gold electrodes with cysteamine SAM 3 | 106 pg mL−1 | 0.01–2000 ng mL−1 | 102–110% | [55] | |
Electrochemical (voltammetric) | Cardiomyocyte cells | Microelectrode array with platinum nanoparticles | 1.55 ng mL−1 | 5.6 ng mL−1–1.4 µg mL−1 | [56] | |||
Saxitoxin | Electrochemical (voltammetric) | Cardiomyocyte cells | Microelectrode array with platinum nanoparticles | 0.35 ng mL−1 | 5.6 ng mL−1–1.4 µg mL−1 | [56] | ||
Optical (interferometry) | Aptamers | 0.5 ng mL−1 | 10–2000 ng mL−1 | 101.4–107.3% | [57] | |||
Microcystin | Electrochemical (impedimetric) | Antibodies (monoclonal) | Graphene | 6.9% | 50 pg mL−1 | 0.05–20 ng mL−1 | [58] | |
Electrochemical (voltammetric) | Antibodies (monoclonal) | Gold electrodes with MoS2 and gold nanorods | 5 pg mL−1 (*3) | 0.01–20 ng mL−1 | 98.3–102.1% | [59] | ||
Electrochemical (voltammetric) | Enzyme (protein phosphate 1) | SPE 2 | 0.93 ng mL−1 (*1) | 0.93–40.32 ng mL−1 | [60] | |||
Okadaic acid | Optical (SPR 12) | Antibodies | Gold electrode with carboxymethylated surface | 0.36 ng mL−1 | [61] | |||
Electrochemical (FET 17) | Antibodies (monoclonal) | Graphene | 0.54–2.19% (n = 5) | 0.05 ng mL−1 | 0.05–300 ng mL−1 | 98.2–100.7% | [62] | |
Optical (fluorescence) | Antibodies (monoclonal) | Carboxylic acid modified magnetic beads and CdTe QD 9 | 0.05 ng mL−1 | 0.2–20 ng mL−1 | [63] | |||
Domoic acid | Optical (SPR 12) | Antibodies | Gold electrode with carboxymethylated surface | 1.66 ng mL−1 | [61] | |||
Electrochemical (FET 17) | Antibodies (monoclonal) | SWCNT 14 | 0.52–1.43% (n = 5) | 10 ng mL−1 | 10–500 ng mL−1 | 92.3–100.3% | [64] | |
Optical (SPR 12) | Antibodies | Glass side chip with gold surface | 0.1 ng mL−1 | 0.1–2 ng mL−1 | [65] | |||
Endocrine Disrupting Chemicals | ||||||||
Bisphenol A | Optical (fluorescence) | Aptamers | Gold nanoparticles | 0.1 ng mL−1 | 1–10000 ng mL−1 | [66] | ||
Optical (evanescent-wave optical fibre) | Aptamers (#13) | Optical fibre surface | 0.45 ng mL−1 (*2) | 460 pg mL−1–22.8 ng mL−1 | 91–110% | [67] | ||
Optical (fluorescence) | Aptamers (#14) | Molybdenum carbide nanotubes | 0.23 ng mL−1 | 0–91.3 ng mL−1 | [68] | |||
Nonylphenol | Electrochemical (FET 17) | Antibodies (monoclonal) | SWCNT 14 | 0.56 ± 0.08% (n = 5) | 5 ng mL−1 | 5–500 ng mL−1 | 97.8–104.6% | [69] |
17β-estradiol | Photo-electrochemical | Aptamers (#15) | CdSe nanoparticles and TiO2 nanotubes | 6.33% (n = 5) | 33 fM | 0–80 pM | 90.0–102.8% | [70] |
Electrochemical (voltammetric) | Antibodies | Gold electrode with MPA 18 SAM 3 | 2.25 pg mL−1 | 2.25–2250 pg mL−1 | [71] | |||
Electrochemical (capacitive) | Antibodies | Gold electrode with MUA 19 SAM 3 | 1 pg mL−1 (*3) | 1–200 pg mL−1 | 97.96–102% | [72] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Justino, C.I.L.; Duarte, A.C.; Rocha-Santos, T.A.P. Recent Progress in Biosensors for Environmental Monitoring: A Review. Sensors 2017, 17, 2918. https://doi.org/10.3390/s17122918
Justino CIL, Duarte AC, Rocha-Santos TAP. Recent Progress in Biosensors for Environmental Monitoring: A Review. Sensors. 2017; 17(12):2918. https://doi.org/10.3390/s17122918
Chicago/Turabian StyleJustino, Celine I. L., Armando C. Duarte, and Teresa A. P. Rocha-Santos. 2017. "Recent Progress in Biosensors for Environmental Monitoring: A Review" Sensors 17, no. 12: 2918. https://doi.org/10.3390/s17122918