Easy-to-Build Textile Pressure Sensor
Abstract
:1. Introduction
2. Sensor Design and Construction
3. Measurement Results
3.1. Recovery Time
3.2. Decreasing Pressure Range
3.3. Increasing Pressure Rrange
3.4. Sensor Comparison and Model
4. Use-Case of the Proposed Sensor
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, M.; Lee, M.R. Beyond the Wearable Hype. IT Prof. 2015, 17, 59–61. [Google Scholar] [CrossRef]
- Pustiek, M.; Beristain, A.; Kos, A. Challenges in Wearable Devices Based Pervasive Wellbeing Monitoring. In Proceedings of the 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things (IIKI), Beijing, China, 22–23 October 2015; pp. 236–243. [Google Scholar]
- Rehman, A.; Mustafa, M.; Javaid, N.; Qasim, U.; Khan, Z.A. Analytical Survey of Wearable Sensors. In Proceedings of the 2012 Seventh International Conference on Broadband, Wireless Computing, Communication and Applications, Victoria, BC, Canada, 12–14 November 2012; pp. 408–413. [Google Scholar]
- Chow, V.T.F.; Sung, K.W.; Meng, H.M.; Wong, K.H.; Leung, G.K.S.; Kuo, Y.-H.; Tsoi, K.K.F. Utilizing Real-Time Travel Information, Mobile Applications and Wearable Devices for Smart Public Transportation. In Proceedings of the 2016 7th International Conference on Cloud Computing and Big Data (CCBD), Macau, China, 16–18 November 2016; pp. 138–144. [Google Scholar]
- Zeng, Y.; Pande, A.; Zhu, J.; Mohapatra, P. WearIA: Wearable device implicit authentication based on activity information. In Proceedings of the 2017 IEEE 18th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Macau, China, 12–15 June 2017; pp. 1–9. [Google Scholar]
- Gonçalves, J.; Leito, L.; Carvalho, V. Analysis of the reliability and accuracy of a wearable device: Comparative study with a certified clinical device. In Proceedings of the 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), Lisbon, Portugal, 21–24 June 2017; pp. 1–6. [Google Scholar]
- Zhang, X.; Wu, C.W.; Fournier-Viger, P.; Van, L.D.; Tseng, Y.C. Analyzing students’ attention in class using wearable devices. In Proceedings of the 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Macau, China, 12–15 June 2017; pp. 1–9. [Google Scholar]
- Mosenia, A.; Sur-Kolay, S.; Raghunathan, A.; Jha, N.K. Wearable Medical Sensor-Based System Design: A Survey. IEEE Trans. Multi-Scale Comput. Syst. 2017, 3, 124–138. [Google Scholar] [CrossRef]
- Frediani, G.; Mazzei, D.; De Rossi, D.E.; Carpi, F. Wearable Wireless Tactile Display for Virtual Interactions with Soft Bodies. Front. Bioeng. Biotechnol. 2014, 2, 31. [Google Scholar] [CrossRef] [PubMed]
- Yunge, D.; Park, S.; Kindt, P.; Chakraborty, S. Dynamic Alternation of Huffman Codebooks for Sensor Data Compression. IEEE Embed. Syst. Lett. 2017, 9, 81–84. [Google Scholar] [CrossRef]
- Mattana, G.; Kinkeldei, T.; Leuenberger, D.; Ataman, C.; Ruan, J.J.; Molina-Lopez, F.; Quintero, A.V.; Nisato, G.; Tröster, G.; Briand, D.; et al. Woven Temperature and Humidity Sensors on Flexible Plastic Substrates for E-Textile Applications. IEEE Sens. J. 2013, 13, 3901–3909. [Google Scholar] [CrossRef]
- Andreoni, G.; Fanelli, A.; Witkowska, I.; Perego, P.; Fusca, M.; Mazzola, M.; Signorini, M.G. Sensor validation for wearable monitoring system in ambulatory monitoring: Application to textile electrodes. In Proceedings of the 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, Venice, Italy, 5–8 May 2013; pp. 169–175. [Google Scholar]
- Wu, T.-K.; Lin, C.-C.; Ku, W.-Y.; Liou, Y.-S.; Yang, C.-Y.; Lee, M.-Y.; Lin, W.-Y.; Tsai, T.-H. The Study of the Enhanced External Counterpulsation System Based on Smart Clothes. In Proceedings of the 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Washington, DC, USA, 27–29 June 2016; pp. 125–129. [Google Scholar]
- Kirthika, S.K.; Ponraj, G.; Ren, H. Fabrication and Comparative Study on Sensing Characteristics of Soft Textile-Layered Tactile Sensors. IEEE Sens. Lett. 2017, 1, 1–4. [Google Scholar] [CrossRef]
- Atalay, O.; Kennon, W. Knitted Strain Sensors: Impact of Design Parameters on Sensing Properties. Sensors 2014, 14, 4712–4730. [Google Scholar] [CrossRef] [PubMed]
- Eom, J.; Lee, W.; Kim, Y.H.; Kim, Y.H. Textile-based wearable sensors using metal-nanowire embedded conductive fibers. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Dai, H.; Thostenson, E.; Schumacher, T. Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites. Sensors 2015, 15, 17728–17747. [Google Scholar] [CrossRef] [PubMed]
- Sibinski, M.; Jakubowska, M.; Sloma, M. Flexible Temperature Sensors on Fibers. Sensors 2010, 10, 7934–7946. [Google Scholar] [CrossRef] [PubMed]
- Mattmann, C.; Clemens, F.; Trster, G. Sensor for Measuring Strain in Textile. Sensors 2008, 8, 3719–3732. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, C.; Koncar, V.; Lewandowski, M.; Dufour, C. Design and Development of a Flexible Strain Sensor for Textile Structures Based on a Conductive Polymer Composite. Sensors 2007, 7, 473–492. [Google Scholar] [CrossRef]
- Teichmann, D.; Kuhn, A.; Leonhardt, S.; Walter, M. The MAIN Shirt: A Textile-Integrated Magnetic Induction Sensor Array. Sensors 2014, 14, 1039–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Seet, B.C. Battery-Free Smart Sock for Abnormal Relative Plantar Pressure Monitoring. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Trindade, I.; da Silva, J.M.; Rui, M.; Pereira, M.; Lucas, J.; Oliveira, L.; Valentim, B.; Barreto, J.; Santos, S.; Silva, M. Design and Evaluation of Novel Textile Wearable Systems for the Surveillance of Vital Signals. Sensors 2016, 16, 1573. [Google Scholar] [CrossRef] [PubMed]
- McKnight, M.; Agcayazi, T.; Kausche, H.; Ghosh, T.; Bozkurt, A. Sensing textile seam-line for wearable multimodal physiological monitoring. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 311–314. [Google Scholar]
- Min, S.D.; Yun, Y.; Shin, H. Simplified Structural Textile Respiration Sensor Based on Capacitive Pressure Sensing Method. IEEE Sens. J. 2014, 14, 3245–3251. [Google Scholar]
- Liu, J.J.; Huang, M.C.; Xu, W.; Zhang, X.; Stevens, L.; Alshurafa, N.; Sarrafzadeh, M. BreathSens: A Continuous On-Bed Respiratory Monitoring System with Torso Localization Using an Unobtrusive Pressure Sensing Array. IEEE J. Biomed. Health Inform. 2015, 19, 1682–1688. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Wang, A.; Zhuang, Y.; Tomita, M.R.; Xu, W. Smart Insole: A Wearable Sensor Device for Unobtrusive Gait Monitoring in Daily Life. IEEE Trans. Ind. Inform. 2016, 12, 2281–2291. [Google Scholar] [CrossRef]
- Zhou, B.; Sundholm, M.; Cheng, J.; Cruz, H.; Lukowicz, P. Never skip leg day: A novel wearable approach to monitoring gym leg exercises. In Proceedings of the 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom), Sydney, NSW, Australia, 14–19 March 2016; pp. 1–9. [Google Scholar]
- Holleczek, T.; Regg, A.; Harms, H.; Troster, G. Textile pressure sensors for sports applications. In Proceedings of the 2010 IEEE SENSORS, Kona, HI, USA, 1–4 November 2010; pp. 732–737. [Google Scholar]
- Meyer, J.; Lukowicz, P.; Troster, G. Textile Pressure Sensor for Muscle Activity and Motion Detection. In Proceedings of the 2006 10th IEEE International Symposium on Wearable Computers, Montreux, Switzerland, 11–14 October 2006; pp. 69–72. [Google Scholar]
- Zhou, B.; Cheng, J.; Lukowicz, P.; Reiss, A.; Amft, O. Monitoring Dietary Behavior with a Smart Dining Tray. IEEE Pervasive Comput. 2015, 14, 46–56. [Google Scholar] [CrossRef]
- Lin, X.; Seet, B.C. A Linear Wide-Range Textile Pressure Sensor Integrally Embedded in Regular Fabric. IEEE Sens. J. 2015, 15, 5384–5385. [Google Scholar] [CrossRef]
- Meyer, J.; Arnrich, B.; Schumm, J.; Troster, G. Design and Modeling of a Textile Pressure Sensor for Sitting Posture Classification. IEEE Sens. J. 2010, 10, 1391–1398. [Google Scholar] [CrossRef]
- Choi, S.; Jiang, Z. A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals. Sens. Actuators A Phys. 2006, 128, 317–326. [Google Scholar] [CrossRef]
- Xu, W.; Huang, M.-C.; Amini, N.; He, L.; Sarrafzadeh, M. eCushion: A textile pressure sensor array design and calibration for sitting posture analysis. IEEE Sens. J. 2013, 13, 3926–3934. [Google Scholar] [CrossRef]
- Goy, C.B.; Menichetti, V.; Yanicelli, L.M.; Lucero, J.B.; López, M.A.; Parodi, N.F.; Herrera, M.C. Design, fabrication and metrological evaluation of wearable pressure sensors. J. Med. Eng. Technol. 2015, 39, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Statex Website. Available online: http://www.statex.biz/ (accessed on 10 December 2017).
- Klemm, M.; Locher, I.; Trster, G. A Novel Circularly Polarized Textile Antenna for Wearable Applications. In Proceedings of the 34th European Microwave Conference, Amsterdam, The Netherlands, 12–14 October 2004; Volume 1, pp. 137–140. [Google Scholar]
- Locher, I.; Klemm, M.; Kirstein, T.; Trster, G. Design and Characterization of Purely Textile Patch Antennas. IEEE Trans. Adv. Packag. 2006, 29, 777–788. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Y.; Chappell, W.J. High Frequency Properties of Electro-Textiles for Wearable Antenna Applications. IEEE Trans. Antennas Propag. 2008, 56, 381–389. [Google Scholar] [CrossRef]
- Salonen, P.; Hurme, H. A Novel Fabric WLAN Antenna for Wearable Applications. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Columbus, OH, USA, 22–27 June 2003; Volume 2, pp. 700–703. [Google Scholar]
- Antistat Website. Available online: http://www.antistat.co.uk/ (accessed on 10 December 2017).
- Cheng, J.; Sundholm, M.; Zhou, B.; Hirsch, M.; Lukowicz, P. Smart-surface: Large scale textile pressure sensors arrays for activity recognition. Pervasive Mob. Comput. 2016, 30, 97–112. [Google Scholar] [CrossRef]
Applied Pressure (kPa) | Recovery Time (s) | 90% Recovery (s) |
---|---|---|
2 | 22.6 | 0 |
4 | 24.6 | 0 |
6 | 30.4 | 0 |
8 | 28.9 | 1 |
10 | 30.0 | 1.9 |
20 | 32.0 | 15 |
30 | 36.0 | 15 |
40 | 30.6 | 14.3 |
50 | 35.3 | 13 |
60 | 32.3 | 14 |
70 | 35.3 | 17 |
Intercept | Slope | MSE | |
---|---|---|---|
Sensor 1 | 1.964 | −0.826 | 0.01 |
Sensor 2 | 2.175 | −0.978 | 0.04 |
Sensor 3 | 2.002 | −1.002 | 0.01 |
Sensor 4 | 1.877 | −0.700 | 0.03 |
Sensor 5 | 2.148 | −0.889 | 0.02 |
All sensors | 1.997 | −0.881 | 0.04 |
Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Sensor 5 | |
---|---|---|---|---|---|
1.991 | 1.85 | 1.92 | 1.91 | 1.91 | |
1.8 | 1.89 | 1.81 | 1.86 | 1.82 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pizarro, F.; Villavicencio, P.; Yunge, D.; Rodríguez, M.; Hermosilla, G.; Leiva, A. Easy-to-Build Textile Pressure Sensor. Sensors 2018, 18, 1190. https://doi.org/10.3390/s18041190
Pizarro F, Villavicencio P, Yunge D, Rodríguez M, Hermosilla G, Leiva A. Easy-to-Build Textile Pressure Sensor. Sensors. 2018; 18(4):1190. https://doi.org/10.3390/s18041190
Chicago/Turabian StylePizarro, Francisco, Piero Villavicencio, Daniel Yunge, Mauricio Rodríguez, Gabriel Hermosilla, and Ariel Leiva. 2018. "Easy-to-Build Textile Pressure Sensor" Sensors 18, no. 4: 1190. https://doi.org/10.3390/s18041190
APA StylePizarro, F., Villavicencio, P., Yunge, D., Rodríguez, M., Hermosilla, G., & Leiva, A. (2018). Easy-to-Build Textile Pressure Sensor. Sensors, 18(4), 1190. https://doi.org/10.3390/s18041190