Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission
Abstract
:1. Introduction
2. Theoretical Model for Life Prediction
3. Materials and Method
3.1. Specimens
3.2. Experimental Equipment and Procedures
4. Results and Discussion
4.1. AE Signals of TC11 Titanium Alloy
4.2. AE Characteristics of Fatigue Crack Growth
4.3. Fatigue Life Prediction
5. Conclusions
- The use of AE monitoring technology can be used for the timely detection of the growth stages of fatigue cracks. The relationship between the cumulative AE hits and the number of cycles indicated the same variation as observed by the micro-camera of the crack propagation. However, the AE technique is more sensitive and can detect the initiation of the cracks in the materials to achieve early identification of fatigue damage.
- The characteristics of the AE parameters, such as energy and duration, provide warning signs for gas turbine engine blades at the critical point where the fatigue cracks enter the stage of unstable propagation, which ultimately leads to catastrophic failure.
- The proposed mathematical model of the relationship between AE energy rate and crack growth rate provides a basis for determining the crack propagation state and predicting the remaining fatigue life of gas turbine engine blades. Specific material constants should be evaluated through testing prior to the implementation of the proposed model.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hamed, A.; Tabakoff, W.C.; Wenglarz, R.V. Erosion and Deposition in Turbomachinery. J. Propuls. Power 2012, 22, 350–360. [Google Scholar] [CrossRef]
- Witek, L. Experimental crack propagation and failure analysis of the first stage compressor blade subjected to vibration. Eng. Fail. Anal. 2009, 16, 2163–2170. [Google Scholar] [CrossRef]
- Silveira, E.; Atxaga, G.; Irisarri, A.M. Failure analysis of a set of compressor blades. Eng. Fail. Anal. 2008, 15, 666–674. [Google Scholar] [CrossRef]
- Peters, J.O.; Ritchie, R.O. Influence of foreign-object damage on crack initiation and early crack growth during high-cycle fatigue of Ti–6Al–4V. Eng. Fract. Mech. 2000, 67, 193–207. [Google Scholar] [CrossRef]
- Liu, Y.C.; Li, H.W.; Li, M. Military Aircraft Engine Condition Monitoring and Fault Diagnosis Technology; National Defense Industry Press: Beijing, China, 2015. [Google Scholar]
- García, I.; Zubia, J.; Durana, G.; Aldabaldetreku, G.; Illarramendi, M.A.; Villatoro, J. Optical Fiber Sensors for Aircraft Structural Health Monitoring. Sensors 2015, 15, 15494–15519. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J.; Zubia, J.; Aranguren, G.; Arrue, J.; Poisel, H.; Saez, I. Comparing polymer optical fiber, fiber Bragg grating, and traditional strain gauge for aircraft structural health monitoring. Appl. Opt. 2009, 48, 1436–1443. [Google Scholar] [CrossRef]
- Szczepankowski, A.; Szymczak, J. Initiation of Damage to the Hot Part of Aircraft Turbine Engines. Res. Works Air Force Inst. Technol. 2016, 38, 61–74. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C.; Ihara, I. Sensors and Technologies for Structural Health Monitoring: A Review. In New Developments in Sensing Technology for Structural Health Monitoring; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–14. [Google Scholar]
- Zachos, M.P.; Schohl, K.E. Bridging design and implementation for a more practical Condition Based Maintenance Plus (CBM+) solution: Embedded vehicle diagnostics on the Mini-Vehicle Computer System (VCS). In Proceedings of the IEEE Autotestcon, Orlando, FL, USA, 13–16 September 2010; pp. 34–38. [Google Scholar]
- Ignatovich, S.R.; Menou, A.; Karuskevich, M.V.; Maruschak, P.O. Fatigue damage and sensor development for aircraft structural health monitoring. Theor. Appl. Fract. Mech. 2013, 65, 23–27. [Google Scholar] [CrossRef]
- Beale, J.K.; Hess, A. Experiences with A-7E and the AV-8B engine monitoring systems: The good and the ugly. In Proceedings of the IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 25 March 2000; pp. 221–227. [Google Scholar]
- Liu, C.K.; Latona, N.P.; Dimaio, G.L.; Hanson, M. Nondestructive testing using rotational acoustic emission sensors. J. Am. Leather Chem. Assoc. 2005, 100, 438–446. [Google Scholar]
- Tang, J.; Soua, S.; Mares, C.; Gan, T.H. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades. Sensors 2017, 17, 2507. [Google Scholar] [CrossRef] [PubMed]
- Dunegan, H.; Harris, D. Acoustic emission-a new nondestructive testing tool. Ultrasonics 1969, 7, 160–166. [Google Scholar] [CrossRef]
- Xu, X. Application of AE Technology in Fatigue Crack Detection of Helicopter Components. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2003. [Google Scholar]
- Paget, C.A.; Atherton, K.; O’Brien, E. Modified Acoustic Emission Generated in a Full-Scale Aircraft Wing Subjected to Simulated Flight Loading. In Composite Technologies for 2002; Elsevier: Amsterdam, The Netherlands, 2004; pp. 957–962. [Google Scholar]
- Feng, J. AE Characteristic Analysis in Aircraft Fatigue Test under Flight Loading Condition. J. Mech. Eng. 2010, 46, 6–11. [Google Scholar] [CrossRef]
- Scala, C.M.; Mccardle, J.F.; Bowles, S.J. Acoustic emission monitoring of a fatigue test of an F/A-18 bulkhead. J. Acoust. Emiss. 1992, 10, 49–60. [Google Scholar]
- Pullin, R.; Eaton, M.J.; Hensman, J.J.; Holford, K.M.; Worden, K.; Evans, S.L. A Principal Component Analysis of Acoustic Emission Signals from a Landing Gear Component. Key Eng. Mater. 2007, 347, 139–144. [Google Scholar] [CrossRef]
- Awerbuch, J.; Leone, F.A.; Ozevin, D.; Tan, T.M. On the applicability of acoustic emission to identify modes of damage in full-scale composite fuselage structures. J. Compos. Mater. 2016, 50, 447–469. [Google Scholar] [CrossRef]
- Bhuiyan, M.Y.; Giurgiutiu, V. The signatures of acoustic emission waveforms from fatigue crack advancing in thin metallic plates. Smart Mater. Struct. 2018, 27. [Google Scholar] [CrossRef]
- Bhuiyan, M.Y.; Lin, B.; Giurgiutiu, V. Acoustic emission sensor effect and waveform evolution during fatigue crack growth in thin metallic plate. J. Intell. Mater. Syst. Struct. 2017. [Google Scholar] [CrossRef]
- Bhuiyan, M.Y.; Bao, J.; Poddar, B.; Giurgiutiu, V. Analysis of acoustic emission waveforms from fatigue cracks. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, Portland, OR, USA, 25–29 March 2017. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. [Google Scholar]
- Urbach, A.; Banov, M.; Turko, V.; Feshchuk, Y. Diagnostics of Fatigue Damage of Gas Turbine Engine Blades by Acoustic Emission Method. World Acad. Sci. Eng. Technol. 2011, 59, 906–911. [Google Scholar]
- Louche, H.; Bouabdallah, K.; Vacher, P.; Coudert, T.; Balland, P. Kinematic Fields and Acoustic Emission Observations Associated with the Portevin Le Châtelier Effect on an Al–Mg Alloy. Exp. Mech. 2008, 48, 741–751. [Google Scholar] [CrossRef]
- Yu, J.; Ziehl, P.; Zárate, B.; Caicedo, J. Prediction of fatigue crack growth in steel bridge components using acoustic emission. J. Constr. Steel Res. 2011, 67, 1254–1260. [Google Scholar] [CrossRef]
- Vanniamparambil, P.A.; Guclu, U.; Kontsos, A. Identification of Crack Initiation in Aluminum Alloys using Acoustic Emission. Exp. Mech. 2015, 55, 837–850. [Google Scholar] [CrossRef]
- Paris, P.C.; Erdogan, F.A. Critical analysis of crack propagation laws. J. Fluids Eng. 1963, 85, 528–534. [Google Scholar] [CrossRef]
- Berkovits, A.; Fang, D. Study of fatigue crack characteristics by acoustic emission. Eng. Fract. Mech. 1995, 51, 401–409. [Google Scholar] [CrossRef]
- Zaki, A.; Chai, H.K.; Aggelis, D.G.; Alver, N. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique. Sensors 2015, 15, 19069–19101. [Google Scholar] [CrossRef] [PubMed]
- Kappatos, V.; Dermatas, E. Crack detection in noisy environment including raining conditions. Aircr. Eng. Aerosp. Technol. 2007, 10, 163–169. [Google Scholar] [CrossRef]
- Zárate, B.A.; Caicedo, J.M.; Yu, J.; Ziehl, P. Probabilistic Prognosis of Fatigue Crack Growth Using Acoustic Emission Data. J. Eng. Mech. 2012, 138, 1101–1111. [Google Scholar] [CrossRef]
- Maslouhi, A. Fatigue crack growth monitoring in aluminum using acoustic emission and acousto-ultrasonic methods. Struct. Control Health Monit. 2011, 18, 790–806. [Google Scholar] [CrossRef]
- Harris, D.O.; Dunegan, H.L. Continuous monitoring of fatigue-crack growth by acoustic-emission techniques. Exp. Mech. 1974, 14, 71–81. [Google Scholar] [CrossRef]
- “China Aeronautical Materials Handbook” Committee. China Aeronautical Materials Handbook; Standards Press of China: Beijing, China, 2015. [Google Scholar]
- Akbari, M.; Ahmadi, M. The application of acoustic emission technique to plastic deformation of low carbon steel. Phys. Procedia 2010, 3, 795–801. [Google Scholar] [CrossRef]
- Hao, S.; Ramalingam, S.; Klamecki, B.E. Acoustic emission monitoring of sheet metal forming: Characterization of the transducer, the work material and the process. Mater. Process. Technol. 2000, 101, 124–136. [Google Scholar] [CrossRef]
- Yu, J.P.; Ziehl, P. Remote monitoring and prognosis of fatigue cracking in steel bridges with acoustic emission. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 6–10 March 2011; Volume 7983. [Google Scholar]
Alloy Element | Al | Mo | Zr | Si | Ti |
---|---|---|---|---|---|
Mass fraction (%) | 5.8–7.0 | 2.8–3.8 | 0.8–2.0 | 0.20–0.35 | Margin |
1030–1225 | 930 | 9 | 30 | 295 |
Parameter | Value |
---|---|
Sample Rate/MS/s | 2.5 |
Hit Length/K | 8 |
Peak Definition Time/μs | 300 |
Hit Definition Time/μs | 600 |
Hit Lockout Time/μs | 1000 |
Sensor Number | Resonant Frequency/kHz | Operating Freq. Range/kHz | Threshold/dB |
---|---|---|---|
S1/S2 | 150 | 50–200 | 50 |
S3/S4 | 125 | 100–1000 | 40 |
S5 | 150 | 50–200 | 45 |
S6 | 125 | 100–1000 | 35 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Yang, G.; Hu, K. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission. Sensors 2018, 18, 1321. https://doi.org/10.3390/s18051321
Zhang Z, Yang G, Hu K. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission. Sensors. 2018; 18(5):1321. https://doi.org/10.3390/s18051321
Chicago/Turabian StyleZhang, Zhiheng, Guoan Yang, and Kun Hu. 2018. "Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission" Sensors 18, no. 5: 1321. https://doi.org/10.3390/s18051321
APA StyleZhang, Z., Yang, G., & Hu, K. (2018). Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission. Sensors, 18(5), 1321. https://doi.org/10.3390/s18051321