63 km BOFDA for Temperature and Strain Monitoring
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
BOFDA | Brillouin Optical Frequency-Domain Analysis |
BOTDR | Brillouin Optical Time-Domain Reflectometry |
BOTDA | Brillouin Optical Time-Domain Analysis |
CW | continuous wave |
SNR | signal-to-noise-ratio |
SSMF | standard single mode fiber |
BFS | Brillouin frequency shifts |
LD | laser diode |
DFB | distributed feedback |
MZM | Mach–Zehnder modulator |
SBS | stimulated Brillouin scattering |
DSB-SC | dual sideband–suppressed carrier |
VNA | vector network analyzer |
BGS | Brillouin gain spectrum |
EDFA | erbium-doped fiber amplifier |
VOA | variable optical attenuator |
PS | polarization scrambler |
iFFT | inverse Fast Fourier Transformation |
IF | Intermediate Frequency |
FBG | fiber Bragg grating |
FWHM | full width at half maximum |
APC | angled physical contact |
References
- Li, S.; Zhao, B.; Huang, D. Experimental and numerical investigation on temperature measurement of BOTDA due to drop leakage in soil. J. Loss Prev. Proc. Ind. 2016, 41, 1–7. [Google Scholar] [CrossRef]
- Nöther, N.; Wosniok, A.; Krebber, K.; Thiele, E. A distributed fiber optic sensor system for dike monitoring using Brillouin optical frequency domain analysis. In Proceedings of the Smart Sensor Phenomena, Technology, Networks, and Systems 2008, San Diego, CA, USA, 7 April 2008; Volume 6933. [Google Scholar] [CrossRef]
- Nöther, N. Distributed Fiber Sensors in River Embankments: Advancing and Implementing the Brillouin Optical Frequency Domain Analysis; Number 64 in BAM-Dissertationsreihe; Bundesanstalt für Materialforschung und -prüfung (BAM): Berlin, Germany, 2010. [Google Scholar]
- Conseil International Des Grands Réseaux Électriques. Comité d’études B1. In Implementation of Long AC HV and EHV Cable Systems; CIGRÉ: Paris, France, 2017. [Google Scholar]
- Motil, A.; Bergman, A.; Tur, M. State of the art of Brillouin fiber-optic distributed sensing. Opt. Laser Technol. 2016, 78, 81–103. [Google Scholar] [CrossRef]
- Bao, X.; Chen, L. Recent Progress in Brillouin Scattering Based Fiber Sensors. Sensors 2011, 11, 4152–4187. [Google Scholar] [CrossRef] [PubMed]
- Angulo-Vinuesa, X.; Soto, M.; Martin-Lopez, S.; Chin, S.; Ania-Castañón, J.; Corredera, P.; Rochat, E.; Gonzalez-Herraez, M.; Thévenaz, L. Brillouin optical time-domain analysis over a 240 km-long fiber loop with no repeater. In Proceedings of the OFS2012 22nd International Conference on Optical Fiber Sensors, Beijing, China, 26 October 2012; Volume 8421. [Google Scholar]
- Soto, M.A.; Bolognini, G.; Pasquale, F.D.; Thévenaz, L. Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range. Opt. Lett. 2010, 35, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.A.; Bolognini, G.; Di Pasquale, F. Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification. Opt. Exp. 2011, 19, 4444–4457. [Google Scholar] [CrossRef] [PubMed]
- Gogolla, T.; Krebber, K. Fiber sensors for distributed temperature and strain measurements using Brillouin scattering and frequency-domain methods. In Proceedings of the Chemical, Biochemical and Environmental Fiber Sensors IX, Munich, Germany, 30 May 1997; International Society for Optics and Photonics: Washington, DC, USA; Volume 3105, pp. 168–180. [Google Scholar] [CrossRef]
- Minardo, A.; Bernini, R.; Zeni, L. A Simple Technique for Reducing Pump Depletion in Long-Range Distributed Brillouin Fiber Sensors. IEEE Sens. J. 2009, 9, 633–634. [Google Scholar] [CrossRef]
- Wosniok, A.; Nöther, N.; Krebber, K. Distributed fibre optic sensor system for temperature and strain monitoring based on Brillouin optical-fibre frequency-domain analysis. Proc. Chem. 2009, 1, 397–400. [Google Scholar] [CrossRef]
- Lee, H.; Hayashi, N.; Mizuno, Y.; Nakamura, K. Slope-Assisted Brillouin Optical Correlation-Domain Reflectometry: Proof of Concept. IEEE Photonics J. 2016, 8, 1–7. [Google Scholar] [CrossRef]
- Cui, Q.; Pamukcu, S.; Pervizpour, M. Impact Wave Monitoring in Soil Using a Dynamic Fiber Sensor Based on Stimulated Brillouin Scattering. Sensors 2015, 15, 8163–8172. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Bao, X.; Chen, L. High performance Brillouin strain and temperature sensor based on frequency division multiplexing using nonuniform fibers over 75km fiber. In Proceedings of the 21st International Conference on Optical Fiber Sensors, Ottawa, ON, Canada, 17 May 2011; International Society for Optics and Photonics: Washington, DC, USA; Volume 7753. [Google Scholar]
- Nikles, M.; Thevenaz, L.; Robert, P. Brillouin gain spectrum characterization in single-mode optical fibers. J. Lightwave Technol. 1997, 15, 1842–1851. [Google Scholar] [CrossRef]
- Minardo, A.; Zeni, L. Influence of laser phase noise on Brillouin optical time-domain analysis sensors. In Proceedings of the Sixth European Workshop on Optical Fibre Sensors, Limerick, Ireland, 30 May 2016; International Society for Optics and Photonics: Washington, DC, USA; Volume 9916. [Google Scholar]
- Urricelqui, J.; Soto, M.A.; Thévenaz, L. Sources of noise in Brillouin optical time-domain analyzers. In Proceedings of the 24th International Conference on Optical Fibre Sensors, Curitiba, Brazil, 28 September 2015; Volume 9634. [Google Scholar]
- Jetschke, S.; Röpke, U.; Geinitz, E. Averaging of Polarization Modulations in a Distributed Brillouin Fiber Sensor System. In 12th International Conference on Optical Fiber Sensors; Paper OThC31; Optical Society of America: Washington, DC, USA, 1997. [Google Scholar] [CrossRef]
- Bao, X.; Dhliwayo, J.; Heron, N.; Webb, D.J.; Jackson, D.A. Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering. J. Lightwave Technol. 1995, 13, 1340–1348. [Google Scholar] [CrossRef]
- Garcus, D.; Gogolla, T.; Krebber, K.; Schliep, F. Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements. J. Lightwave Technol. 1997, 15, 654–662. [Google Scholar] [CrossRef]
- George, K.; Chen, C.I.H.; Tsui, J.B.Y. Extension of Two-Signal Spurious-Free Dynamic Range of Wideband Digital Receivers Using Kaiser Window and Compensation Method. IEEE Trans. Microw. Theory Tech. 2007, 55, 788–794. [Google Scholar] [CrossRef]
- Ding, Z.; Yao, X.S.; Liu, T.; Du, Y.; Liu, K.; Han, Q.; Meng, Z.; Jiang, J.; Chen, H. Long Measurement Range OFDR Beyond Laser Coherence Length. IEEE Photonics Technol. Lett. 2013, 25, 202–205. [Google Scholar] [CrossRef]
- Soller, B.J.; Gifford, D.K.; Wolfe, M.S.; Froggatt, M.E. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt. Exp. 2005, 13, 666–674. [Google Scholar] [CrossRef]
- Bernini, R.; Minardo, A.; Zeni, L. Distributed Sensing at Centimeter-Scale Spatial Resolution by BOFDA: Measurements and Signal Processing. IEEE Photonics J. 2012, 4, 48–56. [Google Scholar] [CrossRef]
- Minardo, A.; Testa, G.; Zeni, L.; Bernini, R. Theoretical and Experimental Analysis of Brillouin Scattering in Single-Mode Optical Fiber Excited by an Intensity- and Phase-Modulated Pump. J. Lightwave Technol. 2010, 28, 193–200. [Google Scholar] [CrossRef]
- Zeni, L.; Catalano, E.; Coscetta, A.; Minardo, A. High-Pass Filtering for Accurate Reconstruction of the Brillouin Frequency Shift Profile From Brillouin Optical Frequency Domain Analysis Data. IEEE Sens. J. 2018, 18, 185–192. [Google Scholar] [CrossRef]
- Zornoza, A.; Pérez-Herrera, R.A.; Elosúa, C.; Diaz, S.; Bariain, C.; Loayssa, A.; Lopez-Amo, M. Long-range hybrid network with point and distributed Brillouin sensors using Raman amplification. Opt. Exp. 2010, 18, 9531–9541. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapa, T.; Schreier, A.; Krebber, K. 63 km BOFDA for Temperature and Strain Monitoring. Sensors 2018, 18, 1600. https://doi.org/10.3390/s18051600
Kapa T, Schreier A, Krebber K. 63 km BOFDA for Temperature and Strain Monitoring. Sensors. 2018; 18(5):1600. https://doi.org/10.3390/s18051600
Chicago/Turabian StyleKapa, Thomas, Andy Schreier, and Katerina Krebber. 2018. "63 km BOFDA for Temperature and Strain Monitoring" Sensors 18, no. 5: 1600. https://doi.org/10.3390/s18051600
APA StyleKapa, T., Schreier, A., & Krebber, K. (2018). 63 km BOFDA for Temperature and Strain Monitoring. Sensors, 18(5), 1600. https://doi.org/10.3390/s18051600