A Self-Organizing Spatial Clustering Approach to Support Large-Scale Network RTK Systems
Abstract
:1. Introduction
2. The Procedure of Network RTK-Based Precise Positioning
2.1. The Procedure of VRS Generation
2.2. The Bottleneck of Large-Scale Network RTK Systems
2.3. Self-Organizing Spatial Clustering Algorithm
- (1)
- The radius of cluster constraint: Since the spatial correlation decreases as the baseline length increases, the radius of the cluster has to be controlled to ensure the positioning performance.
- (2)
- The real-time constraint: the network RTK system is a real-time system, so the clustering algorithm has to be computationally efficient.
- (3)
- All users should be properly clustered and no negligible user is allowed.
Algorithm 1. SOSC. |
Given alternative set , where is the position of th NTRIP client and total online client number is :
|
2.4. Parallel Computing for Ultra-Large Network RTK Systems
3. Implementation Aspect of Large Scale Network RTK System
4. Performance Evaluation
4.1. Performance Evaluation of the Server Side
4.2. Performance Evaluation of the User Side
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vollath, U.; Landau, H.; Chen, X. Network RTK—Concept and Performance. In Proceedings of the 15th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2002), Portland, OR, USA, 24–27 September 2002. [Google Scholar]
- Woodgate, P.; Coppa, I.; Choy, S.; Phinn, S.; Arnold, L.; Duckham, M. The Australian approach to geospatial capabilities; positioning, earth observation, infrastructure and analytics: Issues, trends and perspectives. Geo-Spat. Inf. Sci. 2017, 20, 109–125. [Google Scholar] [CrossRef]
- Vollath, U.; Buecherl, A.; Landau, H.; Pagels, C.; Wagner, B. Multi-Base RTK Positioning Using Virtual Reference Stations. In Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation, Salt Lake City, UT, USA, 19–22 September 2000. [Google Scholar]
- Brown, N.; Geisler, I.; Troyer, L. RTK Rover Performance using the Master Auxilinary Concept. J. Glob. Position. Syst. 2006, 5, 135–144. [Google Scholar] [CrossRef]
- Takac, F.; Zelzer, O. The Relationship Between Network RTK Solutions MAC, VRS, PRS, FKP and i-MAX. In Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), Savannah, GA, USA, 16–19 September 2008. [Google Scholar]
- Landau, H.; Vollath, U.; Chen, X. Virtual Reference Stations versus Broadcast Solutions in Network RTK—Advantages and Limitations; GNSS: Graz, Austria, 2003. [Google Scholar]
- Wang, L.; Wen, X.; Huang, C. Application of low cost GPS/BDS receiver in UAV precise navigation and positioning. In Proceedings of the China Satellite Navigation Conference (CSNC) 2016 Proceedings, Changsha, China, 18–20 May 2016; pp. 165–174. [Google Scholar]
- Ansari, K.; Wang, C.; Wang, L.; Feng, Y. Vehicle-to-vehicle real-time relative positioning using 5.9 GHz DSRC media. In Proceedings of the 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), Las Vegas, NV, USA, 2–5 September 2013. [Google Scholar]
- Stephenson, S.; Meng, X.; Moore, T.; Baxendale, A.; Edwards, T. Network RTK for Intelligent Vehicles. GPS World 2013, 1, 1. [Google Scholar]
- Forlani, G.; Dall’Asta, E.; Diotri, F.; Cella, U.M.D.; Roncella, R.; Santise, M. Quality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning. Remote Sens. 2018, 10, 311. [Google Scholar] [CrossRef]
- Uradzinski, M.; Kim, D.; Langley, R.B. The Usefulness of Internet-based (NTrip) RTK for Navigation and Intelligent Transportation Systems. In Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), Savannah, GA, USA, 16–19 September 2008. [Google Scholar]
- Yin, D. A Framework for Network RTK Data Processing Based on Grid Computing. Master’s Thesis, Queensland University of Technology, Brisbane, Australia, 2009. [Google Scholar]
- Xing, J.; Sha, J.; Gao, L.; Ma, Z.; Wang, S.; Feng, Y.; Gao, S. A VRS Information Receiving Terminal Based on Regional Griding Principle. Patent No. CN 102508270, 20 June 2012. [Google Scholar]
- Chen, X.; Ouyang, C.; Shi, J. Virtual Reference Station (VRS) Coordinate’s Pattern of QianXun Ground-Based Augmentation System. In China Satellite Navigation Conference 2018; Springer: Berlin/Heidelberg, Germany, 2018; Volume 497, pp. 285–295. [Google Scholar]
- Talbot, N.C. Compact Data Transmission Standard for High-Precision GPS. In Proceedings of the 9th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1996), Kansas City, MO, USA, 17–20 September 1996. [Google Scholar]
- Weber, G.; Dettmering, D.; Gebhard, H. Networked Transport of RTCM via Internet Protocol (NTRIP). Int. Assoc. Geod. Symp. 2005, 128, 60–64. [Google Scholar]
- Shen, L.; Wang, L.; Wu, M.; Ding, X. The design and realization of online land patrol system based on CORS. In Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2013; Volume 243, pp. 149–157. [Google Scholar]
- Edwards, S.; Clarke, P.; Goebell, S.; Penna, N. An examination of commerical network RTK GPS services in Great Britain. J. Surv. Rev. 2010, 42. [Google Scholar] [CrossRef]
- Landau, H.; Vollath, U.; Chen, X. Virtual reference station systems. J. Glob. Position. Syst. 2002, 1, 137–143. [Google Scholar] [CrossRef]
- Alves, D.B.M.; Monico, J.F.G. GPS/VRS positioning using atmospheric modeling. GPS Solut. 2011, 15, 253–261. [Google Scholar] [CrossRef]
- Hu, G.; Khoo, H.S.; Goh, P.C.; Law, C.L. Development and assessment of GPS virtual reference stations for RTK positioning. J. Geod. 2003, 77, 292–302. [Google Scholar] [CrossRef]
- Dai, L.; Han, S.; Wang, J.; Rizos, C. Comparison of Interpolation Algorithms in Network based GPS Techniques. Navig. J. Inst. Navig. 2003, 50, 277–293. [Google Scholar] [CrossRef]
- Ouassou, M.; Jensen, A.B.O.; Gjevestad, J.G.O.; Kristiansen, O. Next Generation Network Real-Time Kinematic Interpolation Segment to Improve the User Accuracy. Int. J. Navig. Observ. 2015, 2015, 1–15. [Google Scholar] [CrossRef]
- Wübbena, G.; Schmitz, M.; Bagge, A. PPP-RTK: Precise Point Positioning Using State-Space Representation in RTK Networks. In Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), Long Beach, CA, USA, 13–16 September 2005; pp. 2584–2594. [Google Scholar]
- Teunissen, P.J.G.; Khodabandeh, A. Review and principles of PPP-RTK methods. J. Geod. 2015, 89, 217–240. [Google Scholar] [CrossRef]
- Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. 1999, 31, 264–323. [Google Scholar] [CrossRef]
- Xu, R.; Wunsch, D., II. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [Google Scholar] [CrossRef] [PubMed]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996. [Google Scholar]
- Ankerst, M.; Breunig, M.M.; Kriegel, H.P.; Sander, J. OPTICS: Ordering Points to Identify the Clustering Structure. In Proceedings of the SIGMOD ’99 Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia, PA, USA, 31 May 31–3 June 1999. [Google Scholar]
- Hinneburg, A.; Keim, D.A. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In Proceedings of the 4th International Conference on Knowledge Discovery and Datamining (KDD98), New York, NY, USA, 27–31 August 1998; pp. 58–65. [Google Scholar]
- Halkidi, M.; Batistakis, Y.; Vazirgiannis, M. On Clustering Validation Techniques. J. Intell. Inf. Syst. 2001, 17, 107–145. [Google Scholar] [CrossRef]
- Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. In Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation—Volume 6; USENIX Association: San Francisco, CA, USA, 2004. [Google Scholar]
- Gustafson, J.L. Reevaluating Amdahl’s Law. Commun. ACM 1988, 31, 532–533. [Google Scholar] [CrossRef]
- Wang, L.; Verhagen, S.; Feng, Y. Ambiguity Acceptance Testing: A Comparison of the Ratio Test and Difference Test; Springer: Berlin/Heidelberg, Germany, 2014; pp. 313–330. [Google Scholar]
- Wang, L.; Verhagen, S. A new ambiguity acceptance test threshold determination method with controllable failure rate. J. Geod. 2015, 89, 361–375. [Google Scholar] [CrossRef] [Green Version]
Distance to the VRS (km) | Fix Rate (Ratio <1/2) | Outage Rate |
---|---|---|
0.7 | 98.90% | 0.40% |
1.6 | 99.40% | 0.20% |
3.0 | 99.20% | 0.00% |
8.2 | 97.80% | 0.80% |
11.1 | 99.00% | 0.00% |
12.1 | 96.50% | 0.00% |
Mean Difference (m) | STD (m) | RMS (m) | |
---|---|---|---|
E | −0.0047 | 0.0047 | 0.0067 |
N | 0.0059 | 0.0061 | 0.0085 |
U | −0.0062 | 0.0079 | 0.0100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, L.; Guo, J.; Wang, L. A Self-Organizing Spatial Clustering Approach to Support Large-Scale Network RTK Systems. Sensors 2018, 18, 1855. https://doi.org/10.3390/s18061855
Shen L, Guo J, Wang L. A Self-Organizing Spatial Clustering Approach to Support Large-Scale Network RTK Systems. Sensors. 2018; 18(6):1855. https://doi.org/10.3390/s18061855
Chicago/Turabian StyleShen, Lili, Jiming Guo, and Lei Wang. 2018. "A Self-Organizing Spatial Clustering Approach to Support Large-Scale Network RTK Systems" Sensors 18, no. 6: 1855. https://doi.org/10.3390/s18061855
APA StyleShen, L., Guo, J., & Wang, L. (2018). A Self-Organizing Spatial Clustering Approach to Support Large-Scale Network RTK Systems. Sensors, 18(6), 1855. https://doi.org/10.3390/s18061855