UCMAC: A Cooperative MAC Protocol for Underwater Wireless Sensor Networks
Abstract
:1. Introduction
2. Related Work
3. System Description
4. Operation of Proposed Protocol
4.1. Channel Reservation Phase
4.2. Data Transfer Phase
- The source fails to receive RTCs.
- The size of reaches the limit, .
4.3. Waiting Times
4.3.1. Waiting Times at Source
4.3.2. Waiting Times at Cooperators
4.3.3. Waiting Times at Destination
5. Performance Evaluation
5.1. Simulation Model
5.2. Simulation Results
- System throughput: The average number of DATA bits successfully received by the intended destinations per second (measured in bps)
- Latency: The average time interval between generation and successful delivery of DATA packets at the intended destinations (measured in s)
- Single-hop PDR: The ratio of the number of DATA packets successfully delivered at the intended destinations to the total number of DATA packets generated (measured in %)
- Energy efficiency: The average number of DATA bits successfully received by the intended destinations per Joule (measured in bits/J)
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Akyildiz, I.F.; Pompili, D.; Melodia, T. Underwater acoustic sensor networks: Research challenges. Ad Hoc Netw. 2005, 3, 257–279. [Google Scholar] [CrossRef]
- Forouzan, B.A. Data Communications and Networking, 4th ed.; McGraw-Hill: New York, NY, USA, 2007; pp. 311–340. ISBN 978-007-125442-7. [Google Scholar]
- Molins, M.; Stojanovic, M. Slotted FAMA: A MAC protocol for underwater acoustic networks. In Proceedings of the OCEANS 2006—Asia Pacific, Singapore, 16–19 May 2007; pp. 1–7. [Google Scholar]
- Xie, P.; Cui, J.-H. R-MAC: An Energy-Efficient MAC Protocol for Underwater Sensor Networks. In Proceedings of the International Conference on Wireless Algorithms, Systems, and Applications, Chicago, IL, USA, 1–3 August 2011; pp. 187–195. [Google Scholar]
- Azad, S.; Casari, P.; Hasan, K.T.; Zorzi, M. MACA–APT: A MACA-based Adaptive Packet Train Transmission Protocol for Underwater Acoustic Networks. In Proceedings of the International Conference on Underwater Networks & Systems, Rome, Italy, 12–14 November 2014. [Google Scholar]
- Nosrantinia, A.; Hunter, T.E.; Hedayat, A. Cooperative Communication in Wireless Networks. IEEE Commun. Mag. 2004, 42, 74–80. [Google Scholar] [CrossRef]
- Sendonaris, A.; Erkip, E.; Aazhang, B. User Cooperation Diversity―Part 1: System Description. IEEE Trans. Commun. 2003, 51, 1927–1938. [Google Scholar] [CrossRef]
- Sendonaris, A.; Erkip, E.; Aazhang, B. User Cooperation Diversity―Part 2: Implementation Aspects and Performance Analysis. IEEE Trans. Commun. 2003, 51, 1939–1948. [Google Scholar] [CrossRef]
- Morillo-Pozo, J.; García-Vidal, J.; Pérez-Neira, A.I. Collaborative ARQ in Wireless Energy-Constrained Networks. In Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing, Cologne, Germany, 2 September 2005; pp. 2–7. [Google Scholar]
- Dianati, M.; Ling, X.; Naik, K.; Shen, X. A Node-Cooperative ARQ Scheme for Wireless Ad Hoc Networks. IEEE. Trans. Veh. Technol. 2006, 55, 1032–1044. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.; Fu, S.; Qian, Y.; Chen, H.-H. Increasing the Throughput of Wireless LANs via Cooperative Retransmission. In Proceedings of the IEEE Global Communications Conference 2007, Washington, DC, USA, 26–30 November 2007; pp. 5231–5235. [Google Scholar]
- Wang, X.; Yang, C. A MAC Protocol Supporting Cooperative Diversity for Distributed Wireless Ad Hoc Networks. In Proceedings of the IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, Berlin, Germany, 11–14 September 2005; pp. 1396–1400. [Google Scholar]
- Shankar, S.; Chou, C.-T.; Ghosh, M. Cooperative Communication MAC (CMAC)—A New MAC protocol for Next Generation Wireless LANs. In Proceedings of the International Conference on Wireless Networks, Communications and Mobile Computing, Maui, HI, USA, 13–16 June 2005; pp. 1–6. [Google Scholar]
- Liu, P.; Tao, Z.; Narayanan, S.; Korakis, T.; Panwar, S.S. CoopMAC: A Cooperative MAC for Wireless LANs. IEEE. J. Sel. Areas Commun. 2007, 25, 340–354. [Google Scholar] [CrossRef]
- Alonso-Zárate, J.; Kartsakli, E.; Verikoukis, C.; Alonso, L. Persistent RCSMA: A MAC Protocol for a Distributed Cooperative ARQ Scheme in Wireless Networks. EURASIP J. Adv. Signal Process. 2008, 2008, 817401. [Google Scholar] [CrossRef]
- Shan, H.; Zhuang, W.; Wang, Z. Distributed Cooperative MAC for Multihop Wireless Networks. IEEE Commun. Mag. 2009, 47, 126–133. [Google Scholar] [CrossRef]
- Alonso-Zárate, J.; Kartsakli, E.; Alonso, L.; Verikoukis, C. Cooperative ARQ: A Medium Access Control (MAC) Layer Perspective. In Radio Communications, 1st ed.; Bazzi, A., Ed.; IntechOpen: London, UK, 2010; pp. 227–246. ISBN 978-953-307-091-9. [Google Scholar]
- He, X.; Li, F.Y. Cooperative MAC Design in Multi-hop Wireless Networks: Part 1: When Source and Destination are within the Transmission Range of Each Other. Wirel. Pers. Commun. 2011, 57, 339–350. [Google Scholar] [CrossRef] [Green Version]
- Antonopoulos, A.; Verikoukis, C.; Skianis, C.; Akan, O.B. Energy efficient network coding-based MAC for cooperative ARQ wireless networks. Ad Hoc Netw. 2013, 11, 190–200. [Google Scholar] [CrossRef]
- Antonopoulos, A.; Renzo, M.D.; Verikoukis, C. Effect of Realistic Channel Conditions on the Energy Efficiency of Network Coding-Aided Cooperative MAC Protocols. IEEE Wirel. Commun. 2013, 20, 76–84. [Google Scholar] [CrossRef]
- Antonopoulos, A.; Lalos, A.S.; Renzo, M.D.; Verikoukis, C. Cross-Layer Theoretical Analysis of NC-Aided Cooperative ARQ Protocols in Correlated Shadowed Environments. IEEE. Trans. Veh. Technol. 2015, 64, 4074–4087. [Google Scholar] [CrossRef]
- IEEE. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; IEEE: Piscataway, NJ, USA, 2007. [Google Scholar]
- Han, Z.; Sun, Y.L.; Shi, H. Cooperative Transmission for Underwater Acoustic Communications. In Proceedings of the 2008 IEEE International Conference on Communications, Beijing, China, 19–23 May 2008; pp. 2028–2032. [Google Scholar]
- Luo, Y.; Pu, L.; Peng, Z.; Zhou, Z.; Cui, J.-H.; Zhang, Z. Effective Relay Selection for Underwater Cooperative Acoustic Networks. In Proceedings of the 2013 IEEE 10th International Conference on Mobile Ad-Hoc and Sensor Systems, Hangzhou, China, 14–16 October 2013; pp. 104–112. [Google Scholar]
- Gao, C.; Liu, Z.; Cao, B.; Mu, L. Relay Selection Scheme Based on Propagation Delay for Cooperative Underwater Acoustic Network. In Proceedings of the 2013 International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 24–26 October 2013. [Google Scholar]
- Li, X.; Liu, J.; Yan, L.; Han, S.; Guan, X. Relay Selection in Underwater Acoustic Cooperative Networks: A Contextual Bandit Approach. IEEE Commun. Lett. 2017, 21, 382–385. [Google Scholar] [CrossRef]
- Hafeez, T.; Javaid, N.; Shakeel, U.; Muhammad; Hussain, S.; Maqsood, H. An Energy Efficient Adaptive Cooperative Routing Protocol for Underwater WSNs. In Proceedings of the 2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications, Krakow, Poland, 4–6 November 2015; pp. 304–310. [Google Scholar]
- Rahman, M.A.; Lee, Y.; Koo, I. EECOR: An Energy-Efficient Cooperative Opportunistic Routing Protocol for Underwater Acoustic Sensor Networks. IEEE Access 2017, 5, 14119–14132. [Google Scholar] [CrossRef]
- Syed, A.; Ye, W.; Heidemann, J. T-Lohi: A New Class of MAC Protocols for Underwater Acoustic Sensor Networks. In Proceedings of the 27th Conference on Computer Communications, Phoenix, AZ, USA, 13–18 April 2008. [Google Scholar]
- Lee, J.W.; Cheon, J.Y.; Cho, H.-S. A Cooperative ARQ scheme in Underwater Acoustic Sensor Networks. In Proceedings of the IEEE Oceans 2010, Sydney, Australia, 24–27 May 2010. [Google Scholar]
- Kim, H.; Cho, H.-S. A Cooperative ARQ-based MAC Protocol for Underwater Wireless Sensor Networks. In Proceedings of the 11th ACM International Conference on Underwater Networks and Systems, Shanghai, China, 24–26 October 2016. [Google Scholar]
- Ng, H.-H.; Soh, W.-S.; Motani, M. MACA-U: A Media Access Protocol for Underwater Acoustic Networks. In Proceedings of the 2008 IEEE Global Telecommunications Conference, New Orleans, LA, USA, 30 November–4 December 2008. [Google Scholar]
- Alonso-Zárate, J.; Verikoukis, C.; Kartsakli, E.; Cateura, A.; Alonso, L. A Near-Optimum Cross-Layered Distributed Queuing Protocol for Wireless LAN. IEEE Wirel. Commun. 2008, 15, 48–55. [Google Scholar] [CrossRef]
- Alonso-Zárate, J.; Kartsakli, E.; Skianis, C.; Verikoukis, C.; Alonso, L. Saturation Throughput Analysis of a Cluster-based Medium Access Control Protocol for Single-hop Ad Hoc Wireless Networks. Simulation 2008, 84, 619–633. [Google Scholar] [CrossRef]
- Kim, H.-W.; Cho, H.-S. SOUNET: Self-Organized Underwater Wireless Sensor Network. Sensors 2017, 17, 283. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, M.; Preisig, J. Underwater Acoustic Communication Channels: Propagation Models and Statistical Characterization. IEEE Commun. Mag. 2009, 47, 84–89. [Google Scholar] [CrossRef]
- Karn, P. MACA–A New Channel Access Method for Packet Radio. In Proceedings of the 9th Computer Networking Conference, London, ON, Canada, 22 September 1990. [Google Scholar]
- Zhu, Y.; Zhou, Z.; Peng, Z.; Cui, J.-H. “Busy Terminal Problem” and Implications in Underwater Acoustic Networks. In Proceedings of the 7th ACM International Conference on Underwater Networks and Systems 2012 (WUWNet 2012), Los Angeles, CA, USA, 5–6 November 2012. [Google Scholar]
- TELEDYNE MARINE. Available online: http://www.teledynemarine.com/903-series-atm-903?ProductLineID=8 (accessed on 13 November 2017).
Symbol | Description |
---|---|
Transmission time of a packet 1 | |
Propagation delay between nodes i and j | |
Maximum propagation delay | |
Backoff time of a cooperator j | |
Maximum number of cooperators allowed in one session | |
Delay of DATA transmission at a source | |
Duration that a node i waits for reception of a packet 1 | |
List of cooperators recognized by a source | |
List of potential RTC–CTS collision-causing neighbors |
Parameter | Value |
---|---|
Grid size | |
Propagation speed | 1500 m/s |
Transmission range | 2500 m |
Data rate | 2400 bps |
Tx Power | 20 W |
Rx power | 756 mW |
Maximum number of RTS transmission | 5 |
Control packet size 1 | 120 bits |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-w.; Im, T.H.; Cho, H.-S. UCMAC: A Cooperative MAC Protocol for Underwater Wireless Sensor Networks. Sensors 2018, 18, 1969. https://doi.org/10.3390/s18061969
Kim H-w, Im TH, Cho H-S. UCMAC: A Cooperative MAC Protocol for Underwater Wireless Sensor Networks. Sensors. 2018; 18(6):1969. https://doi.org/10.3390/s18061969
Chicago/Turabian StyleKim, Hee-won, Tae Ho Im, and Ho-Shin Cho. 2018. "UCMAC: A Cooperative MAC Protocol for Underwater Wireless Sensor Networks" Sensors 18, no. 6: 1969. https://doi.org/10.3390/s18061969
APA StyleKim, H. -w., Im, T. H., & Cho, H. -S. (2018). UCMAC: A Cooperative MAC Protocol for Underwater Wireless Sensor Networks. Sensors, 18(6), 1969. https://doi.org/10.3390/s18061969