Real-Time Curvature Detection of a Flexible Needle with a Bevel Tip
Abstract
:1. Introduction
2. System Design
2.1. Fabrication of the Needle
2.2. Artificial Tissue
2.2.1. Fabrication of Artificial Tissue
2.2.2. Measurement of Young’s Modulus of the Tissue
3. Mathematic Model of Curve Fitting
3.1. Plane Curves Fitting
3.2. Spatial Curves Fitting
3.3. Error Analysis of Curve Fitting
3.3.1. The Position Relations between Circles of Curvature and the Curve
- h′(x0) = 0 and h″(x0) > 0, then k(x) has a minimum at x0. There must exist a number ε, and f(x) is outside of the curvature circle of point x0 in the open interval (x0 − ε, x0 + ε).
- h′(x0) = 0 and h″(x0) < 0, then k(x) has a maximum at x0. There must exist a number ε, and f(x) is inside of the curvature circle of point x0 in the open interval (x0 − ε, x0 + ε).
- h′(x0) ≠ 0, then k(x) has no extremum at x0. There must exist a number ε, and f(x) is partially outside and partially inside of the curvature circle of point x0 in the open interval (x0 − ε, x0 + ε).
3.3.2. Error Measurement
3.3.3. Curvature Interpolation
4. Experiment and Results
4.1. Calibration of the Strain Gauge
4.2. Single Arc Experiment
4.3. Experiment of Needles in Tissue
4.4. Space Curve Experiment
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Moreira, P.; Misra, S. Biomechanics-Based Curvature Estimation for Ultrasound-guided Flexible Needle Steering in Biological Tissues. Ann. Biomed. Eng. 2015, 43, 1716–1726. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.Y.; Frasson, L.; Rodriguez, F. Closed-Loop Planar Motion Control of a Steerable Probe With a “Programmable Bevel” Inspired by Nature. IEEE Trans. Robot. 2011, 27, 970–983. [Google Scholar] [CrossRef] [Green Version]
- Reed, K.B.; Okamura, A.M.; Cowan, N.J. Controlling a Robotically Steered Needle in the Presence of Torsional Friction. In Proceedings of the IEEE International conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009. [Google Scholar]
- Abayazid, M.; Roesthuis, R.J.; Reilink, R.; Misra, S. Integrating Deflection Models and Image Feedback for Real-Time Flexible Needle Steering. IEEE Trans. Robot. 2013, 29, 542–553. [Google Scholar] [CrossRef]
- Abolhassani, N.; Patel, R.; Moallem, M. Needle insertion into soft tissue: A survey. Med. Eng. Phys. 2007, 29, 413–431. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Reed, K.B.; Schafer, B.W.; Ramesh, K.T.; Okamura, A.M. Mechanics of Flexible Needles Robotically Steered through Soft Tissue. Int. J. Robot. Res. 2010, 29, 1640–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, K.B.; Okamura, A.M.; Cowan, N.J. Modeling and Control of Needles with Torsional Friction. IEEE Trans. Biomed. Eng. 2009, 56, 2905–2916. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Dong, W.; Du, Z.; Zhang, Y. Motion modeling and simulation of a flexible needle system with a piezo-actuated tip. In Proceedings of the 4th International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, Taipei, Taiwan, 27–31 October 2014; pp. 124–128. [Google Scholar]
- Gao, D.; Lei, Y.; Zheng, H. Needle steering for robot-assisted insertion into soft tissue: A survey. Chin. J. Mech. Eng. 2012, 25, 629–638. [Google Scholar] [CrossRef]
- Dong, W.; Han, H.; Du, Z. The tip interface mechanics modeling of a bevel-tip flexible needle insertion. In Proceedings of the International Conference on Mechatronics and Automation, Chengdu, China, 5–8 August 2012; pp. 581–586. [Google Scholar]
- Dimaio, S.P.; Salcudean, S.E. Needle steering and motion planning in soft tissues. IEEE Trans. Biomed. Eng. 2005, 52, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Glozman, D.; Shoham, M. Flexible Needle Steering and Optimal Trajectory Planning for Percutaneous Therapies. Lecture Notes Comput. Sci. 2004, 3217, 137–144. [Google Scholar] [Green Version]
- Webster, R.J.; Cowan, N.J.; Chirikjian, G.; Okamura, A.M. Nonholonomic Modeling of Needle Steering; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Engh, J.A.; Podnar, G.; Khoo, S.Y.; Riviere, C.N. Flexible Needle Steering System for Percutaneous Access to Deep Zones of the Brain. In Proceedings of the IEEE Northeast Bioengineering Conference, Easton, PA, USA, 1–2 April 2006; pp. 103–104. [Google Scholar]
- Minhas, D.S.; Engh, J.A.; Fenske, M.M.; Riviere, C.N. Modeling of Needle Steering via Duty-Cycled Spinning. In Proceedings of the International Conference on Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 2756–2759. [Google Scholar]
- Neubach, Z.; Shoham, M. Ultrasound-Guided Robot for Flexible Needle Steering. IEEE Trans. Biomed. Eng. 2017, 57, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Zuo, C.J.; Wang, M.J.; Wang, P.J.; Chen, W.; Hao, Q.; Zhang, H.J. Application of flexible puncture needle in CT-guided percutaneous ethanol injection to liver neoplasms. Acad. J. Second Mil. Med. Univ. 2002, 23, 504–506. [Google Scholar]
- Moreira, P.; Boskma, K.J.; Misra, S. Towards MRI-guided flexible needle steering using fiber Bragg grating-based tip tracking. In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017; pp. 4849–4854. [Google Scholar]
- Najafi, M.; Abolmaesumi, P.; Rohling, R. Single-Camera Closed-Form Real-Time Needle Tracking forUltrasound-Guided Needle Insertion. Ultrasound Med. Biol. 2015, 41, 2663–2676. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.L.; Elayaperumal, S.; Daniel, B.; Ryu, S.C.; Shin, M.; Savall, J.; Black, R.J.; Moslehi, B.; Cutkosky, M.R. Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions. IEEE ASME Trans. Mechatron. 2010, 15, 906–915. [Google Scholar] [CrossRef] [PubMed]
- Dilmoney, B.; Dilmoney, B. Mechanics of the Normal Woman’s Breast; IOS Press: Clifton, VA, USA, 2007. [Google Scholar]
Parameter | Symbol | Value |
---|---|---|
Young’s modulus | E | 50 Gpa |
Diameter | D | 1.2 mm |
Bevel | α | 15° |
Length | L | 120 mm |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Chen, F.; Yang, M.; Huang, L.; Du, Z.; Sun, L.; Dong, W. Real-Time Curvature Detection of a Flexible Needle with a Bevel Tip. Sensors 2018, 18, 2057. https://doi.org/10.3390/s18072057
Zhang B, Chen F, Yang M, Huang L, Du Z, Sun L, Dong W. Real-Time Curvature Detection of a Flexible Needle with a Bevel Tip. Sensors. 2018; 18(7):2057. https://doi.org/10.3390/s18072057
Chicago/Turabian StyleZhang, Bo, Fangxin Chen, Miao Yang, Linxiang Huang, Zhijiang Du, Lining Sun, and Wei Dong. 2018. "Real-Time Curvature Detection of a Flexible Needle with a Bevel Tip" Sensors 18, no. 7: 2057. https://doi.org/10.3390/s18072057
APA StyleZhang, B., Chen, F., Yang, M., Huang, L., Du, Z., Sun, L., & Dong, W. (2018). Real-Time Curvature Detection of a Flexible Needle with a Bevel Tip. Sensors, 18(7), 2057. https://doi.org/10.3390/s18072057