Features of X-Band Radar Backscattering Simulation Based on the Ocean Environmental Parameters in China Offshore Seas
Abstract
:1. Introduction
2. Data Processing in China Offshore Seas
2.1. Brief Description of the Data and Study Area
2.2. The Features of the Ocean Environmental Parameters in China Offshore Seas
2.2.1. The Rose Map of Wind Speed and Significant Wave Height in China Offshore Seas
2.2.2. Monthly Variations of the Ocean Environmental Parameters
2.2.3. Empirical Formulas for the Relationship between the Ocean Environment Parameters
3. Method for Electromagnetic Scattering Model
3.1. The Finite Depth Sea Spectrum Based on Ocean Environment Parameters
3.2. A Modified Two-Scale Model Considering the Influen of the Foam Coverage
4. Results and Discussion
4.1. Monthly Variation of Backscattering Coefficients Based on the Ocean Environment Parameters
4.2. Mean Backscattering Coefficients Versus Wind Speed in Dfifferent Seas
4.3. Mean Backscattering Coefficients Versus Azimuth Angles in Different Seas
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Raffa, F.; Ludeno, G.; Soldovieri, F.; Serafino, F. Proof of Feasibility of the Sea State Monitoring from Data Collected in Medium Pulse Mode by a X-Band Wave Radar System. Remote Sens. 2018, 10, 459. [Google Scholar] [CrossRef]
- Ludeno, G.; Reale, F.; Dentale, F.; Carratelli, E.P.; Natale, A.; Soldovieri, F.; Serafino, F. An X-band radar system for bathymetry and wave field analysis in a harbour area. Sensors 2015, 15, 1691–1707. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Liu, X.; Gill, E.W. Ocean Wind and Wave Measurements Using X-Band Marine Radar: A Comprehensive Review. Remote Sens. 2017, 9, 1261. [Google Scholar] [CrossRef]
- Hanley, K.E.; Belcher, S.E.; Sullivan, P.P. A Global Climatology of Wind-Wave Interaction. J. Phys. Oceanogr. 2010, 40, 1263–1282. [Google Scholar] [CrossRef]
- Andreas, E.L.; Wang, S. Predicting significant wave height off the northeast coast of the United States. Ocean Eng. 2007, 34, 1328–1335. [Google Scholar] [CrossRef]
- Rusu, E.; Raileanu, A. A multi-parameter data-assimilation approach for wave prediction in coastal areas. J. Oper. Oceanogr. 2016, 9, 13–25. [Google Scholar] [CrossRef]
- Wang, C.; Fei, J.; Ding, J.; Hu, R.; Huang, X.; Cheng, X. Development of a new significant wave height and dominant wave period parameterization scheme. Ocean Eng. 2017, 135, 170–182. [Google Scholar] [CrossRef]
- Vanem, E. Joint statistical models for significant wave height and wave period in a changing climate. Mar. Struct. 2016, 49, 180–205. [Google Scholar] [CrossRef]
- Carrasco, R.; Horstmann, J.; Seemann, J. Significant Wave Height Measured by Coherent X-Band Radar. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5355–5365. [Google Scholar] [CrossRef]
- Panahi, R.; Ghasemi K., A.; Shafieefar, M. Development of a bi-modal directional wave spectrum. Ocean Eng. 2015, 105, 104–111. [Google Scholar] [CrossRef]
- Toba, Y. Local balance in the air-sea boundary processes. J. Oceanogr. 1973, 29, 70–75. [Google Scholar] [CrossRef]
- Guangpeng, X.U.; Kejian, W.U.; Sun, J.; Laboratory, P.O. Ecmwf Re-analyses Data to Study Toba Three-seconds Power Law. Trans. Oceanol. Limnol. 2014, 4, 1–9. (In Chinese) [Google Scholar]
- Knobles, D.P.; Badiey, M. Machine learning applied to estimating broadband source signature characteristics in a shallow ocean environment. J. Acoust. Soc. Am. 2017, 141, 3523. [Google Scholar] [CrossRef]
- Pierson, W.J., Jr.; Moskowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res. 1964, 69, 5181–5190. [Google Scholar] [CrossRef] [Green Version]
- Wilson, B.W. Numerical prediction of ocean waves in the North Atlantic for December, 1959. Dtsch. Hydrographis. Z. 1965, 18, 114–130. [Google Scholar] [CrossRef]
- Goda, Y. A comparative review on the functional forms of directional wave spectrum. Coast. Eng. J. 1999, 41, 1–20. [Google Scholar] [CrossRef]
- Bouws, E.; Günther, H.; Rosenthal, W.; Vincent, C.L. Similarity of the wind wave spectrum in finite depth water: 1. Spectral form. J. Geophys. Res. Oceans 1985, 90, 975–986. [Google Scholar] [CrossRef]
- Elfouhaily, T.; Chapron, B.; Katsaros, K.; Vandemark, D. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res. Oceans 1997, 102, 15781–15796. [Google Scholar] [CrossRef] [Green Version]
- Cox, C.; Munk, W. Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter. J. Opt. Soc. Am 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Wen, S.C.; Sun, S.C.; Wu, K.J.; Zhang, D.C.; Guan, C.L. Effect of water depth on wind-wave frequency spectrum 1.spectral form. Chin. J. Oceanol. Limnol. 1996, 14, 97–105. [Google Scholar]
- Yuan, Y.H. Ministry of Transport of the People’s Republic of China. In Code of Hydrology for Harbor and Waterway; JTS145-2015; China Communications Press: Beijing, China, 2016; ISBN 15114.2202. [Google Scholar]
- Yueh, S.H.; Tang, W.; Fore, A.G.; Neumann, G.; Hayashi, A.; Freedman, A.; Chaubell, J.; Lagerloef, G.S.E. L-Band Passive and Active Microwave Geophysical Model Functions of Ocean Surface Winds and Applications to Aquarius Retrieval. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4619–4632. [Google Scholar] [CrossRef]
- Du, Y.; Yang, X.; Chen, K.S.; Ma, W.; Li, Z. An Improved Spectrum Model for Sea Surface Radar Backscattering at L-Band. Remote Sens. 2017, 9, 776. [Google Scholar] [CrossRef]
- Apel, J.R. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geophys. Res. Oceans 1994, 99, 16269–16291. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, J.; Guo, L. An Improved Two-scale Model with Volumes Scattering for the Dynamic Ocean Surface. Prog. Electromagn. Res. 2009, 89, 39–56. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, M.; Nie, D.; Yin, H.C. Robust Semi-Deterministic Facet Model for Fast Estimation on EM Scattering from Ocean-Like Surface. Am. J. Forensic Psychol. 2009, 18, 347–363. [Google Scholar] [CrossRef]
- Voronovich, A.G.; Zavorotny, V.U. Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves. Waves Random Media 2001, 11, 247–269. [Google Scholar] [CrossRef]
- Kudryavtsev, V.N.; Yurovsky, Y.Y.; Yurovskaya, M.V.; Chapron, B. Estimation of sea surface short-wave spectra from co-polarized radar backscattering cross-section. In Proceedings of the Progress in Electromagnetics Research Symposium—Fall, Singapore, 19–22 November 2017; pp. 2307–2314. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Mccormick, M.E. Ocean Engineering Wave Mechanics; John Wiley: New York, NY, USA, 1973; ISBN 0471581771. [Google Scholar]
- Huang, X.Z.; Jin, Y.Q. Scattering and emission from two-scale randomly rough sea surface with foam scatterers. IEE Proc. Microwaves Antennas Propag. 1995, 142, 109–114. [Google Scholar] [CrossRef]
- Reul, N.; Chapron, B. A model of sea-foam thickness distribution for passive microwave remote sensing applications. J. Geophys. Res. Oceans 2003, 108. [Google Scholar] [CrossRef]
- Zaynab, G.; Sébastien, A.; Luke, R.; Guerin, C.A. Investigation of Azimuthal Variations From X-Band Medium-Grazing-Angle Sea Clutter. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6110–6118. [Google Scholar]
Sea Areas | Average Depth (m) | Latitude Range | Longitude Range | Matrix Row | Matrix Column | Valid Data |
---|---|---|---|---|---|---|
Yellow Sea | 44 | 34–36 | 121–125 | 37–45 | 65–81 | 22,032 |
East China Sea | 370 | 24–30 | 123–125 | 61–85 | 73–81 | 32,400 |
South China Sea | 1212 | 6–18 | 109–119 | 109–157 | 17–57 | 284,832 |
Sea Areas | Empirical Formula | Wind Direction (Degree) | Used Data (Proportion) | |||
---|---|---|---|---|---|---|
a | b | RMSE | R2 | |||
Yellow Sea | 0.02163 | 0.9023 | 0.1698 | 0.6503 | 180~360 | 14,259 (64.72%) |
East China Sea | 0.0147 | 1.421 | 0.2175 | 0.6273 | 180~360 | 21,482 (66.30%) |
South China Sea | 0.01585 | 0.8895 | 0.3113 | 0.6999 | 180~360 | 147,571 (51.81%) |
Sea Areas | Wind Direction | Wind Direction | ||||||
---|---|---|---|---|---|---|---|---|
a | b | RMSE | R2 | a | b | RMSE | R2 | |
Yellow Sea | 5.823 | 0.4848 | 0.4429 | 0.4217 | 5.233 | 0.1866 | 0.2909 | 0.4178 |
East China Sea | 5.883 | 0.4273 | 0.4174 | 0.6937 | 6.242 | 0.1983 | 0.3689 | 0.3607 |
South China Sea | 5.704 | 0.2631 | 0.4707 | 0.5231 | 6.065 | 0.2846 | 0.4152 | 0.7576 |
Sea Areas | Depth (m) | H1/3 (m) | Tp (s) | Relative Water Depth (h/L0) | Inverse Wave Age |
---|---|---|---|---|---|
Yellow Sea | 44 | 1.4431 | 6.7804 | 0.8974 | 0.4723 |
East China Sea | 370 | 1.7885 | 8.4757 | 4.8298 | 0.3778 |
South China Sea | 1212 | 1.2858 | 7.8828 | 18.2903 | 0.4063 |
Sea Areas | Depth (m) | H1/3 (m) | Tp (s) | Relative Water Depth (h/L0) | Inverse Wave Age |
---|---|---|---|---|---|
Yellow Sea | 44 | 3.0653 | 7.8039 | 0.6775 | 0.8207 |
East China Sea | 370 | 2.8910 | 9.3225 | 3.9922 | 0.6870 |
South China Sea | 1212 | 2.4745 | 9.4973 | 12.6002 | 0.6743 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Wu, Z.; Wu, J.; Jeon, G.; Ma, L. Features of X-Band Radar Backscattering Simulation Based on the Ocean Environmental Parameters in China Offshore Seas. Sensors 2018, 18, 2450. https://doi.org/10.3390/s18082450
Wu T, Wu Z, Wu J, Jeon G, Ma L. Features of X-Band Radar Backscattering Simulation Based on the Ocean Environmental Parameters in China Offshore Seas. Sensors. 2018; 18(8):2450. https://doi.org/10.3390/s18082450
Chicago/Turabian StyleWu, Tao, Zhensen Wu, Jiaji Wu, Gwanggil Jeon, and Liwen Ma. 2018. "Features of X-Band Radar Backscattering Simulation Based on the Ocean Environmental Parameters in China Offshore Seas" Sensors 18, no. 8: 2450. https://doi.org/10.3390/s18082450
APA StyleWu, T., Wu, Z., Wu, J., Jeon, G., & Ma, L. (2018). Features of X-Band Radar Backscattering Simulation Based on the Ocean Environmental Parameters in China Offshore Seas. Sensors, 18(8), 2450. https://doi.org/10.3390/s18082450