The Applications of Promoter-gene-Engineered Biosensors
Abstract
:1. Introduction
1.1. Strategies for the Construction of Promoter-Enhanced Biosensor
1.1.1. Synthesizing Promoters to Increase Their Properties
1.1.2. Approaches of Mn2+ and Mg2+ Added Random, Error-Prone PCR and Site-Directed Mutagenesis for Further Improving a Synthesized Promoter’s Performance
2. Applications of Promoter Gene-Engineered Biosensors
2.1. Construction of High-Throughput Screening Platform for Screening Transcription Factor-Acting Molecules and Anti-Tumor Drugs with High Pharmacological Activity
2.2. Performance-Enhanced Promoter Can Be Applied for Studying the Membrane Protein’s Localization and Enzyme Activity
2.3. Utilization of a Promoter for Construction of a Sensitive Biosensor for Probing the Density of Bacteria
2.4. Mn2+ and Mg2+ Added Random Error-Prone PCR Mutagenesis Approach for the Construction of the Biosensor “Library” That Is Regulated by Inhibitory Proteins
2.5. Integration of Both a Promoter-Based Biosensor and a Bacterium–Host Cell Interactive Mechanism for High-Throughput Screening of Meningitis Drugs
2.6. Construction of Promoter-Engineered Genetic Circuit for the Detection of Intermediate Toxic Compounds to Improve the Synthesis of Value-Added Medicinal Product Yields
3. Discussion and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Regina, M.; Julia, F. Transcription factor-based biosensors in biotechnology: Current state and future prospects. Appl. Microbiol. Biotechnol. 2016, 100, 79–90. [Google Scholar]
- Blazeck, J.; Alper, H.S. Promoter engineering: Recent advances in controlling transcription at the most fundamental level. Biotechnol. J. 2013, 8, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, J.A.; McKee, A.E.; Keasling, J.D. High-throughput metabolic engineering: Advances in small-molecule screening and selection. Annu. Rev. Biochem. 2010, 79, 563–590. [Google Scholar] [CrossRef] [PubMed]
- Kasey, C.M.; Zerrad, M.; Li, Y.; Cropp, T.A.; Williams, G.J. Development of transcription factor-based designer macrolide biosensors for metabolic engineering and synthetic biology. ACS Synth. Biol. 2018, 7, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.Y.; Cirino, P.C. Design and application of a mevalonate-responsive regulatory protein. Angew. Chem. 2011, 123, 1084–1086. [Google Scholar] [CrossRef] [PubMed]
- Inui, M.; Suda, M.; Okino, S.; Nonaka, H.; Puskas, L.G.; Vertès, A.A.; Yukawa, H. Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 2007, 153, 2491–2504. [Google Scholar] [CrossRef] [PubMed]
- Yukawa, H.; Omumasaba, C.A.; Nonaka, H.; Kos, P.; Okai, N.; Suzuki, N.; Suda, M.; Tsuge, Y.; Watanabe, J.; Ikeda, Y.; et al. Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 2007, 153, 1042–1058. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Chen, T.; Zhao, X. Comparative transcriptome analysis for metabolic engineering. Methods Mol. Biol. 2013, 985, 447–458. [Google Scholar] [PubMed]
- Dahl, R.H.; Zhang, F.; Alonso-Gutierrez, J.; Baidoo, E.; Batth, T.S.; Redding-Johanson, A.M.; Petzold, C.J.; Mukhopadhyay, A.; Lee, T.S.; Adams, P.D.; et al. Engineering dynamic pathway regulation using stress-response promoters. Nat. Biotechnol. 2013, 31, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Q.; Zheng, P.; Zhang, Z.; Liu, Y.; Sun, C.; Cao, G.; Zhou, W.; Wang, X.; Zhang, D.; et al. Developing a high-throughput screening method for threonine overproduction based on an artificial promoter. Microb. Cell Fact. 2015, 14, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.M.; Hameed, H.M.A.; Mugweru, J.; Chhotaray, C.; Wang, C.; Tan, Y.; Liu, J.; Li, X.; Tan, S.; Ojima, I.; et al. Drug resistance mechanisms and novel drug targets for tuberculosis therapy. J. Genet. Genomics 2017, 44, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xu, S.; Wang, L.; Chin, D.P.; Wang, S.; Jiang, G.; Xia, H.; Zhou, Y.; Li, Q.; Ou, X.; et al. National survey of drug-resistant tuberculosis in China. N. Engl. J. Med. 2012, 366, 2161–2170. [Google Scholar] [CrossRef] [PubMed]
- Joris, V.; Gomez, E.L.; Menchi, L.; Lobysheva, I.; Di Mauro, V.; Esfahani, H.; Condorelli, G.; Balligand, J.L.; Catalucci, D.; Dessy, C. MicroRNA-199a-3p and MicroRNA-199a-5p Take Part to a Redundant Network of Regulation of the NOS (NO Synthase)/NO Pathway in the Endothelium. Arterioscler. Thromb. Vasc. Biol. 2018, 5. [Google Scholar] [CrossRef] [PubMed]
- Kind, S.; Kreye, S.; Wittmann, C. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab. Eng. 2011, 13, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shen, Y.P.; Jiang, X.L.; Feng, L.S.; Liu, J.Z. Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production. J. Ind. Microbiol. Biotechnol. 2018, 45, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Riedel, C.; Rittmann, D.; Dangel, P.; Mockel, B.; Petersen, S.; Sahm, H.; Eikmanns, B.J. Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J. Mol. Microbiol. Biotechnol. 2001, 3, 573–583. [Google Scholar] [PubMed]
- Moroishi, T.; Hansen, C.G.; Guan, K.L. The emerging roles of YAP and TAZ in cancer. Nat. Rev. Cancer 2015, 15, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Zhu, Z.M.; Liu, C.L.; He, X.J.; Zhang, H.Y.; Dong, J.H. Knockdown of yes-associated protein inhibits proliferation and downregulates large tumor suppressor 1 expression in MHCC97H human hepatocellular carcinoma cells. Mol. Med. Rep. 2015, 11, 4101–4108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.; Feng, Y.; Henson, B.; Wang, B.; Huang, X.; Li, M.; Desai, P.; Zhu, H. VirD: A virion display array for profiling functional membrane proteins. Anal. Chem. 2013, 85, 8046–8054. [Google Scholar] [CrossRef] [PubMed]
- Frunzke, J.; Engels, V.; Hasenbein, S.; Gätgens, C.; Bott, M. Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol. Microbiol. 2008, 2, 305–322. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Hashimoto, K.; Kawasaki, H.; Nakamatsu, T. Changes in enzyme activities at the pyruvate node in glutamate-overproducing Corynebacterium glutamicum. J. Biosci. Bioeng. 2008, 105, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Nobrega, C.S.; Devreese, B.; Pauleta, S.R. YhjA—An Escherichia coli trihemic enzyme with quinol peroxidase activity. Biochim. Biophys. Acta 2018, 1859, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Cammarata, M.; Thyer, R.; Lombardo, M.; Anderson, A.; Wright, D.; Ellington, A.; Brodbelt, J.S. Characterization of trimethoprim resistant E. coli dihydrofolate reductase mutants by mass spectrometry and inhibition by propargyl-linked antifolates. Chem. Sci. 2017, 8, 4062–4072. [Google Scholar] [CrossRef] [PubMed]
- Anesiadis, N.; Cluett, W.R.; Mahadevan, R. Dynamic metabolic engineering for increasing bioprocess productivity. Metab. Eng. 2008, 10, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Anesiadis, N.; Kobayashi, H.; Cluett, W.R.; Mahadevan, R. Analysis and design of a genetic circuit for dynamic metabolic engineering. ACS Synth. Biol. 2013, 2, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Lu, S.; Wu, J.; Liang, C.; Wang, W.; Wang, W.; Jin, J.M.; Tang, S.Y. Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor. Metab. Eng. 2017, 40, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.Y.; Ling, C.; Zhang, Y.Y.; Huang, J.; Liu, J.Z. Production of shikimic acid from Escherichia coil through chemically induced chromosomal evolution and cofactor metabolic engineering. Microb. Cell Fact. 2014, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Chen, C.S.; Ho, J.; Pearce, D.; Hu, S.; Wang, B.; Desai, P.; Kim, K.S.; Zhu, H. High-throughput chip assay for investigating Escherichia coli interaction with the blood-brain barrier using microbial and human proteome microarrays (Dual-microarray technology). Anal Chem. 2018. [Google Scholar] [CrossRef] [PubMed]
- Miksch, G.; Bettenworth, F.; Friehs, K.; Flaschel, E.; Saalbach, A.; Twellmann, T.; Nattkemper, T.W. Libraries of synthetic stationary-phase and stress promoters as a tool for fine-tuning of expression of recombinant proteins in Escherichia coli. J. Biotechnol. 2005, 120, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Sawaya, M.R.; Eisenberg, D.S.; Liao, J.C. Expanding metabolism for biosynthesis of nonnatural alcohols. Proc. Natl. Acad. Sci. USA 2008, 105, 20653–20658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Kim, Y.H.; Min, J. The effect of ArgR-DNA binding affinity on ornithine production in Corynebacterium glutamicum. Curr. Microbiol. 2009, 4, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Park, J.M.; Lee, J.H.; Chang, S.T.; Park, J.S.; Kim, Y.H.; Min, J. Interaction of transcriptional repressor ArgR with transcriptional regulator FarR at the argB promoter region in Corynebacterium Glutamicum. Appl. Environ. Microbiol. 2011, 77, 711–778. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Zhao, M.; Yi, H.; Zhang, W.; Cao, J.; Sun, Y.; Zhang, L.; Si, J.; Xia, N.; Zheng, Z. Comparison of Respiratory Syncytial Virus Infection on Different Week-ages BALB/c Mice. Bing Du Xue Bao 2016, 32, 411–416. [Google Scholar] [PubMed]
- Neerukonda, S.N.; Katneni, U.K.; Bott, M.; Golovan, S.P.; Parcells, M.S. Induction of the unfolded protein response (UPR) during Marek’s disease virus (MDV) infection. Virology 2018, 522, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Koval, C. LVAD infection during bridge-to-transplant, unique aspects of treatment and prevention. Curr. Opin. Organ Transplant. 2018, 23, 400–406. [Google Scholar] [CrossRef] [PubMed]
Engineered Component | Approaches | Reference |
---|---|---|
Engineered molecular effectors | (1) Fluorescence of strain HF19 harboring PBAD-gfpuv reporter plasmid (Ppcc442) and expressing AraC-mev (Ppcc423-mev), in the presence of the indicated concentration of small molecule inducers (“effectors”), such as mevalonate, succinic acid, l-arabinose, Triacetic acid lactone. (2) MphR inducers are macrolides, such as erythromycin, oleandomycin, nabomycin, pikromycin, methymycin, josamycin. | [4,5] |
Engineered transcription factor | l-arabinose-responsive transcription factor engineered to specifically respond to the level of d-arabinose, acid lactone, and mevalonate. | [5] |
Engineered promoter | An oleic acid biosensor replacing the native FadR-regulated fadBA promoter with a synthetic two copies of promoter into the strong phage T7 pomoter. | [5,9,10] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Xie, Z.; Jiang, X.; Li, Z.; Shen, Y.; Wang, B.; Liu, J. The Applications of Promoter-gene-Engineered Biosensors. Sensors 2018, 18, 2823. https://doi.org/10.3390/s18092823
Feng Y, Xie Z, Jiang X, Li Z, Shen Y, Wang B, Liu J. The Applications of Promoter-gene-Engineered Biosensors. Sensors. 2018; 18(9):2823. https://doi.org/10.3390/s18092823
Chicago/Turabian StyleFeng, Yingzhu, Zhangzhang Xie, Xuanlong Jiang, Zhen Li, Yuping Shen, Bochu Wang, and Jianzhong Liu. 2018. "The Applications of Promoter-gene-Engineered Biosensors" Sensors 18, no. 9: 2823. https://doi.org/10.3390/s18092823
APA StyleFeng, Y., Xie, Z., Jiang, X., Li, Z., Shen, Y., Wang, B., & Liu, J. (2018). The Applications of Promoter-gene-Engineered Biosensors. Sensors, 18(9), 2823. https://doi.org/10.3390/s18092823