Maximum Correntropy Based Unscented Particle Filter for Cooperative Navigation with Heavy-Tailed Measurement Noises
Abstract
:1. Introduction
2. Problem Formulation
2.1. System Model
2.2. Review of the Standard UPF Algorithm
3. Derivation of MCUPF
3.1. Brief Introduction of MCC
3.2. Robustify the UPF
3.3. Modified Resampling Process
3.4. The Proposed MCUPF
4. Lake-Water Filed Trial
4.1. Comparisons of Different Filtering Methods
4.2. Computational Complexity Analysis and Compares
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vaulin, Y.V.; Dubrovin, F.S.; Scherbatyuk, A.F. Some Algorithms for Determining an Unknown Initial Position of AUV Using Information from a Single Beacon Navigation System. Gyroscopy Navig. 2017, 8, 209–216. [Google Scholar] [CrossRef]
- Scherbatyuk, A.F.; Dubrovin, F.S. About Accuracy Estimation of AUV Single-Beacon Mobile Navigation Using ASV, Equipped with DGPS. In Proceedings of the OCEANS MTS/IEEE Conference, Shanghai, China, 10–13 April 2016; pp. 1–4. [Google Scholar]
- Kebkal, K.G.; Mashoshin, A.I. AUV acoustic positioning methods. Gyroscopy Navig. 2017, 8, 80–89. [Google Scholar] [CrossRef]
- Huang, Y.L.; Zhang, Y.G.; Xu, B.; Wu, Z.M.; Chambers, J.A. A New Adaptive Extended Kalman Filter for Cooperative Localization. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 353–368. [Google Scholar] [CrossRef]
- Tan, H.P.; Diamant, R.; Seah, W.K.G.; Waldmeyer, M. A Survey of Techniques and Challenges in Underwater Localization. Ocean Eng. 2011, 38, 1663–1676. [Google Scholar] [CrossRef]
- Gao, W.; Liu, Y.L.; Xu, B. Robust Huber-based iterated divided difference filtering with application to cooperative localization of autonomous underwater vehicles. Sensors 2014, 4, 24523–24542. [Google Scholar] [CrossRef] [PubMed]
- Paull, L.; Saeedi, S.; Seto, M.; Li, H. AUV Navigation and Localization: A Review. IEEE J. Ocean. Eng. 2014, 39, 131–149. [Google Scholar] [CrossRef]
- Allotta, B.; Caiti, A.; Costanzi, R.; Fanelli, F.; Meli, E.; Ridolfi, A. Development and Online Validation of an Ukf-based Navigation Algorithm for AUVs. IFAC-PapersOnline 2016, 49, 69–74. [Google Scholar] [CrossRef]
- Bahr, A.; Leonard, J.J.; Fallon, M.F. Cooperative localization for autonomous underwater vehicles. Int. J. Robot. Res. 2009, 28, 714–728. [Google Scholar] [CrossRef]
- Fallon, M.F.; Papadopoulos, G.; Leonard, J.J. Cooperative AUV Navigation Using a Single Surface Craft; Massachusetts Institute of Technology: Cambridge, MA, USA, 2010; pp. 331–340. [Google Scholar]
- Papadopoulos, G.; Fallon, M.F.; Leonard, J.J.; Patrikalakis, N.M. Cooperative Localization of Marine Vehicles Using Nonlinear State Estimation. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 4874–4879. [Google Scholar]
- Paull, L.; Saeedi, S.; Seto, M.; Li, H. Sensor-driven Online Coverage Planning for Autonomous Underwater Vehicles. IEEE/ASME Trans. Mechatron. 2013, 18, 1827–1838. [Google Scholar] [CrossRef]
- Maurelli, F.; Krupinski, S.; Petillot, Y.; Salvi, J. A Particle Filter Approach for AUV Localization. Oceans 2008, 15, 1–7. [Google Scholar]
- Simon, D. Optimal State Estimation: Kalman, H and Nonlinear Approaches, 1st ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Bravo, F.G.; Vale, A.; Ribeiro, M.I.; Salvi, J. Navigation Strategies for Cooperative Localization Based on a Particle-filter Approach. Integr. Comput. Aided Eng. 2007, 14, 263–279. [Google Scholar] [CrossRef]
- Dan, C.; Arnaud, D. A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Process. 2002, 50, 736–746. [Google Scholar] [Green Version]
- Aggarwal, P.; Gu, D.Q.; Nassar, S.; Syed, Z.; EI-sheimy, N. Extended Particle Filter (EPF) for INS/GPS Land Vehicle Navigation Applications. In Proceedings of the Institute of Navigation Satellite Division Technical Meeting, Fort Worth, TX, USA, 25–28 September 2007; pp. 2619–2626. [Google Scholar]
- Li, L.Q.; Ji, H.B.; Luo, J.H. The iterated extended Kalman particle filter. In Proceedings of the IEEE International Symposium on Communications and Information Technology, Beijing, China, 16 January 2005; pp. 1213–1216. [Google Scholar]
- Julier, S.; Uhlmann, J.; Durrant-Whyte, H.F. A new method for the nonlinear transformation of means and covariance in filters and estimations. IEEE Trans. Autom. Control 2000, 45, 477–482. [Google Scholar] [CrossRef]
- Carpenter, J.; Clifford, P.; Fearnhead, P. Improved particle filter for nonlinear problems. IEE Proc. Radar Sonar Navig. 1999, 146, 2–7. [Google Scholar] [CrossRef]
- Huang, Y.L.; Zhang, Y.G.; Xu, B.; Wu, Z.M.; Chambers, J.A. A new outlier-robust student’s t based gaussian approximate Filter for Cooperative Localization. IEEE/ASME Trans. Mechatron. 2017, 22, 2308–2386. [Google Scholar] [CrossRef]
- Vasilijevic, A.; Borovic, B.; Vukic, Z. Underwater Vehicle Localization with Complementary Filter: Performance Analysis in the Shallow Water Environment. J. Intell. Robot. Syst. 2012, 68, 373–386. [Google Scholar] [CrossRef]
- Vaganay, J.; Leonard, J.J.; Bellingham, J.G. Outlier Rejection for Autonomous Acoustic Navigation. In Proceedings of the IEEE International Conference on Robotics and Automation, Cambridge, MA, USA, 22–28 April 1996; pp. 2174–2181. [Google Scholar]
- Guo, R.X.; Gan, Q.; Zhang, J.W.; Guo, K.; Dong, J.K. Huber cubature particle filter and online state estimation. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2017, 231, 158–167. [Google Scholar] [CrossRef]
- Li, K.L.; Hu, B.Q.; Chang, L.B.; Li, Y. Robust square-root cubature Kalman filter based on Huber’s M-estimation methodology. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2015, 229, 1236–1245. [Google Scholar] [CrossRef]
- Tseng, C.H.; Lin, S.F.; Jwo, D.J. Robust Huber-based cubature Kalman filter for GPS navigation processing. J. Navig. 2016, 70, 527–546. [Google Scholar] [CrossRef]
- Chang, L.B.; Chang, G.B.; Li, A. Huber-based novel robust unscented Kalman filter. IET Sci. Meas. Technol. 2012, 6, 502–509. [Google Scholar] [CrossRef]
- Gandhi, M.A.; Mili, L. Robust Kalman Filter Based on a Generalized Maximum-Likelihood-Type Estimator. IEEE Trans. Signal Process. 2010, 58, 2509–2520. [Google Scholar] [CrossRef]
- Huang, Y.L.; Zhang, Y.G.; Li, N.; Chambers, J.A. Robust Student’s t Based Nonlinear Filter and Smoother. IEEE Trans. Aerosp. Electron. Syst. 2017, 52, 2586–2596. [Google Scholar] [CrossRef]
- Huang, Y.L.; Zhang, Y.G.; Wu, Z.M.; Li, N.; Chambers, J.A. A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices. IEEE Trans. Autom. Control 2018, 63, 594–601. [Google Scholar] [CrossRef]
- Izanloo, R.; Fakoorian, S.A.; Yazdi, H.S.; Simon, D. Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise. In Proceedings of the 2016 Annual Conference on Information Science and Systems (CISS), Princeton, NJ, USA, 16–18 March 2016; pp. 500–505. [Google Scholar]
- Liu, X.; Chen, B.D.; Xu, B.; Wu, Z.Z.; Honeine, P. Maximum correntropy unscented filter. Int. J. Syst. Sci. 2017, 48, 1607–1615. [Google Scholar] [CrossRef]
- Chen, B.D.; Wang, J.J.; Zhao, H.Q.; Zheng, N.N.; Principe, J.C. Convergence of a fixed-point algorithm under maximum correntropy criterion. IEEE Signal Process. Lett. 2015, 10, 1723–1727. [Google Scholar] [CrossRef]
- Liu, X.; Qu, H.; Zhao, J.H.; Yue, P.C.; Wang, M. Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation. Sensors 2016, 16, 1530. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.W.; He, Z.M.; Li, D.; Zhou, H.Y.; Wang, J.Q. Maximum Correntropy Unscented Kalman Filter for Ballistic Missile Navigation System based on SINS/CNS Deeply Integrated Mode. Sensors 2018, 18, 1724. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Sun, S.; Sattar, T.P. Adapting sample size in particle filters through KLD-resampling. Electron. Lett. 2013, 49, 740–742. [Google Scholar] [CrossRef] [Green Version]
- Fox, D. Adapting the sample size in particle filters through KLD-sampling. Int. J. Robot. Res. 2003, 22, 985–1003. [Google Scholar] [CrossRef]
- Golub, G.H.; Van Loan, C.F. Matrix Computation, 2nd ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 2013. [Google Scholar]
1. Initialization by Equations (5) and (6). |
2. Importance sampling by Equations (7)–(21): Time update (Equations (7)–(10)); Measurement update (Equations (11)–(21)). |
3. Resampling by Equation (22). |
4. State estimation by Equations (23) and (24). |
1. Initialization by Equations (5) and (6). | |
2. Importance sampling like UPF (Equations (7)–(21)) but modify the Equation (14) as follows: | |
(39) | |
3. Resampling by Equation (22). | |
4. State estimation by Equations (23) and (24). |
1. Initialization by Equations (6) and (7). | |
2. Importance sampling as robust UPF | |
3. Resampling: KLD-resampling as shown in Figure 1. | |
(41) | |
4. State estimation by resampled particles from last step. | |
(42) | |
(43) |
Sensors | Metric | Parameters |
---|---|---|
Acoustic modem: ATM-885 | Working range Error rate | Up to 8 km Less than |
GPS: OEMV-2RT-2 | Position accuracy Date update rate | 1.8 m (CEP) 10 Hz |
DVL:DS-99 | Working range Measurement accuracy | −150 m/s–200 m/s 0.1–0.3% |
Magnetic Compass:H/H HZ001 | Heading accuracy | 0.3° |
Sensors | Size |
---|---|
Acoustic modem: ATM-885 | in diameter long |
GPS: OEMV-2RT-2 | |
DVL:DS-99(Transceiver) | |
Magnetic Compass:H/H HZ001 |
Filters | Parameters |
---|---|
MCUKF | Kernel bandwidth |
PF | The number of particles |
UPF | The number of particles |
HRUPF | Turning parameter Iterated times |
IVBCKF | Prior parameters , , , |
MCUPF | Kernel bandwidth Bin size Error bound Bound parameter Maximum particle number Starting particle number |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Zhang, Y.; Wang, G.; Wang, X.; Li, N. Maximum Correntropy Based Unscented Particle Filter for Cooperative Navigation with Heavy-Tailed Measurement Noises. Sensors 2018, 18, 3183. https://doi.org/10.3390/s18103183
Fan Y, Zhang Y, Wang G, Wang X, Li N. Maximum Correntropy Based Unscented Particle Filter for Cooperative Navigation with Heavy-Tailed Measurement Noises. Sensors. 2018; 18(10):3183. https://doi.org/10.3390/s18103183
Chicago/Turabian StyleFan, Ying, Yonggang Zhang, Guoqing Wang, Xiaoyu Wang, and Ning Li. 2018. "Maximum Correntropy Based Unscented Particle Filter for Cooperative Navigation with Heavy-Tailed Measurement Noises" Sensors 18, no. 10: 3183. https://doi.org/10.3390/s18103183