Geodetic and Remote-Sensing Sensors for Dam Deformation Monitoring
Abstract
:1. Introduction
2. Which Are the Types of Deformations to be Measured in Dams?
3. Geodetic and GNSS Sensors for Precise Measurement at Specific Locations
3.1. Optical Collimators
3.2. Geodetic Networks
3.3. Global Navigation Satellite Systems
3.4. Terrestrial-Based Radio Frequency Ranging
4. Remote Sensors for Areal Deformation Measurement (ADM)
4.1. Terrestrial Laser Scanning
4.2. Ground-Based InSAR
4.3. Spaceborne Advanced DInSAR
5. Integrated Monitoring Systems, Data Processing and Methods for Deformation Analysis
5.1. Integrated Monitoring Systems
5.2. Conventional Deformation Analysis
5.3. Time-Series Analysis for Investigation of Deformations’ Causative Reasons
5.3.1. Statistical Methods
5.3.2. Deterministic Methods
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chrzanowski, A.; Szostak, A.; Steeves, R. Reliability and efficiency of dam deformation monitoring schemes. In Proceedings of the 2011 Annual Conference of Canadian Dam Association (CDA/ACB), Fredericton, NB, Canada, 15 October 2011; Available online: http://www2.unb.ca/ccge/publications/downloads/CCGE_2011_CDA_Reliability.pdf (accessed on 20 October 2018).
- Wujanz, D. Terrestrial Laser Scanning for Geodetic Deformation Monitoring. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2016. [Google Scholar]
- Pytharouli, S.; Kontogianni, V.; Psimoulis, P.; Nickitopoulou, A.; Stiros, S.; Skourtis, C.; Stremmenos, F.; Kountouris, A. Geodetic monitoring of earthfill and concrete dams in Greece. Int. J. Hydropower Dams 2007, 2, 82–85. [Google Scholar]
- Wieland, M.; Kirchen, G.F. Long-term dam safety monitoring of Punt dal Gall arch dam in Switzerland. Front. Struct. Civ. Eng. 2012, 6, 76–83. [Google Scholar]
- Radhakrishnan, N. Direct GPS measurement of Koyna Dam deformation during earthquake. In Proceedings of the 3rd IAG/12th FIG Symposium, Baden, Austria, 22–24 May 2006. [Google Scholar]
- García-Palacios, J.H.; Soria, J.M.; Díaz, I.M.; Tirado-Andrés, F. Ambient modal testing of a double-arch dam: The experimental campaign and model updating. J. Phys. Conf. Ser. 2016, 744, 012037. [Google Scholar] [CrossRef]
- Altunişik, A.C.; Günaydin, M.; Sevim, B.; Bayraktar, A.; Adanur, S. Retrofitting effect on the dynamic properties of model-arch dam with and without reservoir water using ambient-vibration test methods. J. Struct. Eng. 2016, 142, 04016069. [Google Scholar] [CrossRef]
- Lienhart, W.; Ehrhart, M.; Grick, M. High frequent total station measurements for the monitoring of bridge vibrations. J. Appl. Geod. 2017, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, M.; Mattarei, M.; Boffi, P.; Martinelli, M. A software-defined coherent fiber optic sensor for manufacturing machine diagnostic. In Proceedings of the 2016 IEEE Sensors Applications Symposium (SAS), Catania, Italy, 20–22 April 2016; pp. 1–5. [Google Scholar]
- Schofield, W.; Breach, M. Engineering Surveying; Heinemann-Butterworth: Oxford, UK, 2007. [Google Scholar]
- De Lacy, M.C.; Ramos, M.I.; Gil, A.J.; Franco, O.D.; Herrera, A.M.; Avilés, M.; Domínguez, A.; Chica, J.C. Monitoring of vertical deformations by means high-precision geodetic levelling. Test case: The Arenoso dam (South of Spain). J. Appl. Geod. 2017, 11, 31–41. [Google Scholar] [CrossRef]
- ICOLD. Monitoring of Dams and Their Foundations. State of the Art Bulletin CIGBI; ICOLD: Paris, France, 1989. [Google Scholar]
- Capra, A.; Scaioni, M.; Wieser, A. Editorial: Terrestrial remote sensing for areal deformation monitoring. Appl. Geomat. 2015, 7, 61–63. [Google Scholar] [CrossRef]
- Lindenbergh, R.; Pietrzyk, P. Change detection and deformation analysis using static and mobile laser scanning. Appl. Geomat. 2015, 7, 65–74. [Google Scholar] [CrossRef]
- Monserrat, O.; Crosetto, M.; Luzi, G. A review of ground-based SAR interferometry for deformation measurement. ISPRS J. Photogramm. Remote Sens. 2014, 93, 40–48. [Google Scholar] [CrossRef]
- Corsetti, M.; Manunta, M.; Marsella, M.; Scifoni, S.; Sonnessa, A.; Ojha, C. Satellite techniques: New perspectives for the monitoring of dams. In Engineering Geology for Society and Territory; Lollino, G., Manconi, A., Clague, J., Shan, W., Chiarle, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 989–993. [Google Scholar]
- Szostak-Chrzanowski, A.; Massiéra, M.; Chrzanowski, A. Analysis of deformations of large earth dams. J. Appl. Geod. 2007, 1, 81–89. [Google Scholar] [CrossRef]
- Milillo, P.; Burgmann, R.; Lundgren, P.; Salzer, J.; Perissin, D.; Fielding, E.; Biondi, F.; Milillo, G. Space geodetic monitoring of engineered structures: The ongoing destabilization of the Mosul dam, Iraq. Sci. Rep. 2016, 6, 37408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, P. Combining CORS Networks, Automated Observations and Processing, for Network RTK Integrity Analysis and Deformation Monitoring. In Proceedings of the 15th FIG Congress Facing the Challenges, Sydney, Australia, 11–16 April 2010; pp. 11–16. [Google Scholar]
- Jiang, W.; Liu, H.; Liu, W.; He, Y. CORS development for Xilongchi dam deformation monitoring. Geomat. Inf. Sci. Wuhan Univ. 2012, 37, 949–952. [Google Scholar]
- Cifres, R.; Cooksley, G. Satellite Technologies for Dam Motion Monitoring. Proceedings of 3rd Joint International Symposium on Deformation Monitoring (JISDM), Vienna, Austria, 30 March–1 April 2016; p. 8. [Google Scholar]
- Galan-Martin, D.; Marchamalo-Sacristan, M.; Martinez-Marin, R.; Sanchez-Sobrino, J.A. Geomatics applied to dam safety DGPS real time monitoring. Int. J. Civ. Eng. 2013, 11, 134–141. [Google Scholar]
- Corsetti, M.; Fossati, F.; Manunta, M.; Marsella, M. Advanced SBAS-DInSAR technique for controlling large civil infrastructures: An application to the Genzano di Lucania dam. Sensors 2018, 18, 2371. [Google Scholar] [CrossRef] [PubMed]
- Sowers, G.; Sally, H. Earth and Rockfill Dam Engineering; Asia Publishing House: London, UK, 1962. [Google Scholar]
- Golze, A.R. Handbook of Dam Engineering; Van Nostrand Reinhold Company: New York, NY, USA, 1977. [Google Scholar]
- Oro, S.R.; Mafioleti, T.R.; Neto, A.C.; Garcia, S.R.P.; Júnior, C.N. Study of the influence of temperature and water level of the reservoir about the displacement of a concrete dam. Int. J. Appl. Mech. Eng. 2016, 21, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Pytharouli, S.I.; Stiros, S.C. Ladon Dam (Greece) deformation and reservoir level fluctuations: Evidence for a causative relationship from the spectral analysis of a geodetic monitoring record. Eng. Struct. 2005, 27, 361–370. [Google Scholar] [CrossRef]
- Rastogi, B.K.; Gupta, H.K. Dams and Earthquakes; Elsevier Science Books: Amsterdam, The Netherlands, 1975. [Google Scholar]
- Siyahi, B.; Arslan, H. Earthquake induced deformation of earth dams. Bull. Eng. Geol. Environ. 2008, 67, 397–403. [Google Scholar] [CrossRef]
- Kasana, A.; Minárik, M.; Nikolaj, M. Impact of geotechnical factors on the safety of low embankment dams from the perspective of technical and safety supervision. Slovak J. Civ. Eng. 2015, 23, 8–13. [Google Scholar] [CrossRef]
- Azzoni, A.; Mazzà, G.; Scaioni, M.; Vassena, G. The automatic collimator for dam monitoring ISAC 5000. Results of one year tests. In Proceedings of the IAG Symposium on Geodesy for Geotechnical and Structural Engineering, Eisenstadt, Austria, 20–22 April 1998; pp. 331–336. [Google Scholar]
- Guler, G.; Kilic, H.; Hosbas, G.; Ozaydin, K. Evaluation of the movements of the dam embankments by means of geodetic and geotechnical methods. J. Surv. Eng. 2006, 132, 31–39. [Google Scholar] [CrossRef]
- Wagner, A. A new approach for geo-monitoring using modern total stations and RGB+D images. Measurement 2016, 82, 64–74. [Google Scholar] [CrossRef]
- Zhou, Y.; Wagner, A.; Wunderlich, T.; Wasmeier, P. Calibration method for IATS and application in multi-target monitoring using coded targets. J. Appl. Geod. 2016, 11, 99–106. [Google Scholar] [CrossRef]
- Ehrhart, M.; Lienhart, W. Object tracking with robotic total stations: Current technologies and improvements based on image data. J. Appl. Geod. 2017, 11, 131–142. [Google Scholar] [CrossRef]
- Yigit, C.O.; Alcay, S.; Ceylan, A. Displacement response of a concrete arch dam to seasonal temperature fluctuations and reservoir level rise during the first filling period: Evidence from geodetic data. Geomat. Nat. Hazards Risk. 2016, 7, 1489–1505. [Google Scholar] [CrossRef]
- Pytharouli, S.I.; Stiros, S.C. Investigation of the parameters controlling the crest settlement of a major earthfill dam based on the threshold correlation analysis. J. Appl. Geod. 2009, 3, 55–62. [Google Scholar] [CrossRef]
- Guedes, Q.M.; Da Silva, I. Technical report: Shell dam horizontal displacement monitoring–comparative study using geodetic measurement, optical plumb and GPS technologies. J. Appl. Geod. 2010, 3, 249–255. [Google Scholar] [CrossRef]
- Gikas, V.; Sakellariou, M. Settlement analysis of the Mornos earth dam (Greece): Evidence from numerical modeling and geodetic monitoring. Eng. Struct. 2008, 30, 3074–3081. [Google Scholar] [CrossRef]
- Meier, E.; Geiger, A.; Ingensand, H.; Licht, H.; Limpach, P.; Steiger, A.; Zwyssig, R. Hydrostatic levelling systems: Measuring at the system limits. J. Appl. Geod. 2010, 4, 91–102. [Google Scholar] [CrossRef]
- Scaioni, M.; Barazzetti, L.; Giussani, A.; Previtali, M.; Roncoroni, F.; Alba, M.I. Photogrammetric techniques for monitoring tunnel deformation. Earth Sci. Inform. 2014, 7, 83–95. [Google Scholar] [CrossRef]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS-Global Navigation Satellite Systems (GPS, Glonass, Galileo and More); Springer: Wien, NY, USA, 2008. [Google Scholar]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the international terrestrial reference frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2017, 121, 6109–6131. [Google Scholar] [CrossRef]
- Seeber, G. Satellite Geodesy; Walter de Gruyter: Berlin, Germany, 2003. [Google Scholar]
- Koch, K.R. Parameter Estimation and Hypothesis Testing in Linear Models, 2nd ed.; Springer: Berlin, Germany, 1999. [Google Scholar]
- Sacerdote, F.; Cazzaniga, N.E.; Tornatore, V. Some considerations on significance analysis for deformation detection via frequentist and Bayesian tests. J. Appl. Geod. 2010, 84, 233–242. [Google Scholar] [CrossRef]
- Nowel, K. Robust M-estimation in analysis of control network deformations: Classical and new method. J. Surv. Eng. 2015, 141, 04015002. [Google Scholar] [CrossRef]
- Tasçi, L. Analysis of dam deformation measurements with the robust and non-robust methods. Sci. Res. Essays 2010, 5, 1770–1779. [Google Scholar]
- Montillet, J.-P.; Walter, M.S.; Timothy, I.M.; Rex, M.F.; Schrock, G. Critical infrastructure monitoring with global navigation satellite systems. J. Surv. Eng. 2016, 142, 04016014. [Google Scholar] [CrossRef]
- Herring, T.A.; King, R.W.; McClusky, S.C. GAMIT Reference Manual, Release 10.6. Available online: http://www-gpsg.mit.edu/~simon/gtgk/GAMIT_Ref.pdf (accessed on 30 August 2018).
- DeLoach, S.R. Continuous deformation monitoring with GPS. J. Surv. Eng. 1989, 115, 93–110. [Google Scholar] [CrossRef]
- Behr, J.; Hudnut, K.; King, N. Monitoring structural deformation at Pacoima Dam, California using continuous GPS. In Proceedings of the Ion GPS, Nashville, TN, USA, 15–18 September 1998; Institute of Navigation: Manassas, VA, USA, 1998; pp. 59–68. [Google Scholar]
- Whitaker, C.; Duffy, M.A.; Chrzanowski, A. Design of a continuous monitoring scheme for the eastside reservoir in Southern California. In Proceedings of the International Federation of Surveyors (FIG) XXI International Congress, Brighton, UK, 19–25 July 1998; pp. 329–344. [Google Scholar]
- Stewart, M.; Tsakiri, M. Long-term dam surface monitoring using the global positioning system. Electron. J. Geotech. Eng. 2001, 6, 1–19. [Google Scholar]
- Chrzanowski, A.; Szostak-Chrzanowska, A. Deformation monitoring surveys—Old problems and new solutions. Rep. Geod. 2009, 2, 85–103. [Google Scholar]
- Van Cranenbroeck, J. State of the art in structural geodetic monitoring solutions for hydropower dams. In Proceedings of the FIG Working Week, Marrakech, Morocco, 18–22 May 2011. [Google Scholar]
- Rutledge, D.R.; Meyerholtz, S.Z.; Brown, N.E.; Baldwin, C.S. Dam stability-assessing the performance of a GPS monitoring system. GPS World 2006, 17, 26–33. [Google Scholar]
- Choi, K.; Bilich, A.; Larson, K.M.; Axelrad, P. Modified sidereal filtering: Implications for high-rate GPS positioning. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, N. Application of GPS in structural deformation monitoring: A case study on Koyna dam. J. Geomat. 2014, 8, 1. [Google Scholar]
- Bond, J.; Kim, D.; Fletcher, J. A Study of the Use of GPS Sensors for Structural Monitoring of the MactaquacDam. Available online: http://www.gemini-navsoft.com/GPS%20Structural%20Monitoring.pdf (accessed on 30 August 2018).
- Barzaghi, R.; Cazzaniga, N.E.; De Gaetani, C.I.; Pinto, L.; Tornatore, V. Measurement and prediction of dam deformations using classical and GNSS surveying techniques. Sensors 2018, 18, 756. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Progress in deformation monitoring for dams, bridges and power lines. Ann. GIS 2010, 16, 81–90. [Google Scholar] [CrossRef]
- Dardanelli, G.; La Loggia, G.; Capododici, F.; Puccio, L.; Maltese, A. Monitoring displacements of an Earthen dam using GNSS and remote sensing. In Proceedings of the SPIE Remote Sensing, Amsterdam, The Netherlands, 21 October 2014; SPIE: Amsterdam, The Netherlands, 2014; p. 16. [Google Scholar]
- Yang, G.; He, X.; Chen, Y. Integrated GPS and pseudolite positioning for deformation monitoring. Surv. Rev. 2010, 42, 72–81. [Google Scholar] [CrossRef]
- Casaca, J.; Braz, N.; Conde, V. Combined adjustment of angle and distance measurements in a dam monitoring network. Surv. Rev. 2015, 47, 181–184. [Google Scholar] [CrossRef]
- Choudhury, M.; Rizos, C. Slow structural deformation monitoring using Locata—A trial at Tumut Pond Dam. J. Appl. Geod. 2010, 4, 177–187. [Google Scholar] [CrossRef]
- Luhmann, T.; Robson, S.; Kyle, S.; Boehm, J. Close Range Photogrammetry: 3D Imaging Techniques; Walter De Gruyter Inc.: Berlin, Germany, 2014. [Google Scholar]
- Scaioni, M.; Feng, T.; Barazzetti, L.; Previtali, M.; Roncella, R. Image-based deformation measurement. Appl. Geomat. 2015, 7, 75–90. [Google Scholar] [CrossRef]
- Attard, L.; Debono, C.J.; Gianluca, V.; Di Castro, M. Tunnel inspection using photogrammetric techniques and image processing: A review. ISPRS J. Photogramm. Remote Sens. 2018, 144, 180–188. [Google Scholar] [CrossRef]
- Fedele, R.; Scaioni, M.; Barazzetti, L.; Rosati, G.; Biolzi, L. Delamination tests on CFRP-reinforced masonry pillars: Optical monitoring and mechanical modeling. Cem. Concr. Compos. 2014, 45, 243–254. [Google Scholar] [CrossRef]
- Barazzetti, L.; Scaioni, M. Crack measurement: Development, testing and applications of an automatic image-based algorithm. ISPRS J. Photogramm. Remote Sens. 2009, 64, 285–296. [Google Scholar] [CrossRef]
- Vosselman, G.; Maas, H.G. Airborne and Terrestrial Laser Scanning; Whittles: Dunbeath, UK, 2010. [Google Scholar]
- Scaioni, M.; Höfle, B.; Baungarten Kersting, A.P.; Barazzetti, L.; Previtali, M.; Wujanz, D. Methods from information extraction from lidar intensity data and multispectral lidar technology. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 1503–15410. [Google Scholar] [CrossRef]
- Mukupa, W.; Roberts, G.W.; Hancock, C.M.; Al-Manasir, K. A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Surv. Rev. 2016, 49, 99–116. [Google Scholar] [CrossRef]
- Alba, M.; Fregonese, L.; Prandi, F.; Scaioni, M.; Valgoi, P. Structural monitoring of a large dam by terrestrial laser scanning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36, 6. [Google Scholar]
- Alba, M.; Roncoroni, F.; Scaioni, M. Investigations about the accuracy of target measurement for deformation monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 1053–1059. [Google Scholar]
- Lindenbergh, R.; Pfeifer, N. A statistical deformation analysis of two epochs of terrestrial laser data of a lock. In Proceedings of the 7th Conference on Optical 3-D Measurement Techniques, Vienna, Austria, 3–5 October 2005; Vienna University of Technology: Vienna, Austria, 2005; pp. 61–70. [Google Scholar]
- Wang, J. Block-to-point fine registration in terrestrial laser scanning. Remote Sens. 2013, 5, 6921–6937. [Google Scholar] [CrossRef]
- Soudarissanane, S.; Lindenbergh, R.; Menenti, M.; Teunissen, P. Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS J. Photogramm. Remote Sens. 2011, 66, 389–399. [Google Scholar] [CrossRef]
- Ramos-Alcazar, L.; Marchamalo-Sacristan, M.; Martinez-Marin, R. Estimating and plotting TLS midrange precisions in field conditions: Application to dam monitoring. Int. J. Civ. Eng. 2017, 15, 299–307. [Google Scholar] [CrossRef]
- Eling, D. Terrestrisches Laserscanning für die Bauwerksüberwachung; Leibniz-Universität: Hannover, Germany, 2009. [Google Scholar]
- Wang, J. Towards Deformation Monitoring with Terrestrial Laser Scanning Based on External Calibration and Feature Matching Methods; Leibniz University: Hannover, Germany, 2013; pp. 25–39. [Google Scholar]
- Wunderlich, T.; Wasmeier, P.; Ohlmann-Lauber, J.; Schäfer, T.; Reidl, F. Objective Specifications of Terrestrial Laserscanners—A Contribution of the Geodetic Laboratory at the Technische Universität München; Technische Universität München: München, Germany, 2013. [Google Scholar]
- Gordon, S.J.; Lichti, D.D. Modeling terrestrial laser scanner data for precise structural deformation measurement. J. Surv. Eng. 2007, 133, 72–80. [Google Scholar] [CrossRef]
- Wunderlich, T.; Niemeier, W.; Wujanz, D.; Holst, C.; Neitzel, F.; Kuhlmann, H. Areal deformation analysis from TLS point clouds—The challenge. Allg. Vermess. Nachr. 2016, 123, 340–351. [Google Scholar]
- Gonzalez-Aguilera, D.; Gomez-Lahoz, J.; Sanchez, J. A new approach for structural monitoring of large dams with a three-dimensional laser scanner. Sensors 2008, 8, 5866–5883. [Google Scholar] [CrossRef] [PubMed]
- Ohlmann-Lauber, J.; Schäfer, T. Ansätze zur ableitung von deformationen aus TLS-daten. In Terrestrisches Laserscanning (TLS 2011) mit TLS-Challenge; Beiträge zum 106, DVW-Seminar Bd. 66, Schriftenreihe des DVW; Wißner-Verlag: Fulda, Germany, 2011; pp. 161–180. [Google Scholar]
- Holst, C. Analyse der Konfiguration bei der Approximation Ungleichmäßig Abgetasteter Oberflächen auf Basis von Nivellements und Terrestrischen Laserscans. Ph.D. Thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn, Germany, 2015. [Google Scholar]
- Schäfer, T.; Weber, T.; Kyrinovic, P.; Zámecniková, M. Deformation measurement using terrestrial laser scanning at the hydropower station of Gabcikovo. In Proceedings of the INGEO 2004 and FIG Regional Central and Eastern European Conference on Engineering Surveying, Bratislava, Slovakia, 11–13 November 2004. [Google Scholar]
- Tsakiri, M.; Lichti, D.; Pfeifer, N. Terrestrial laser scanning for deformation monitoring. In Proceedings of the 12th FIG Symposium on Deformation Measurement and 3rd IAG Symposium on Geodesy for Geotechnical and Structural Engineering, Baden, Austria, 22–24 May 2006. [Google Scholar]
- Ferretti, A.; Monti-Guarnieri, A.; Prati, C.; Rocca, F. InSAR Principles; ESA TM-19: Noordwijk, The Netherlands, 2007. [Google Scholar]
- Alba, M.; Bernardini, G.; Giussani, A.; Ricci, P.; Roncoroni, F.; Scaioni, M.; Valgoi, P.; Zhang, K. Measurement of dam deformations by terrestrial interferometric techniques. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 133–139. [Google Scholar]
- Luzi, G.; Crosetto, M.; Monserrat, O. Advanced techniques for dam monitoring. In Proceedings of the 2nd International Congress on Dam Maintenance and Rehabilitation, Zaragoza, Spain, 23–25 November 2010; pp. 1103–1108. [Google Scholar]
- Talich, M.; Glöckner, M.; Böhm, O.; Antoš, F.; Soukup, L.; Havrlant, J.; Šolc, J. The application of the ground-based InSAR technique for the deformation monitoring of concrete hydropower dam Orlík on Vltava river. In Proceedings of the 6th International Conference on Engineering Surveying, Prague, Czech Republic, 3–4 April 2014; pp. 203–210. [Google Scholar]
- Tarchi, D.; Rudolf, H.; Luzi, G.; Chiarantini, L.; Coppo, P.; Sieber, A.J. SAR interferometry for structural changes detection: A demonstration test on a dam. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium, IGARSS’99 (Cat. No.99CH36293), Hamburg, Germany, 28 June–2 July 1999; IEEE: Hamburg, Germany, 1999; pp. 1522–1524. [Google Scholar]
- Jenkins, W.; Rosenblad, B.; Gomez, F.; Legarsky, J.; Loehr, E. Deformation measurements of earth dams using a ground based interferometric radar. In Proceedings of the 2012 ASDSO Annual Conference on Dam Safety, Denver, CO, USA, 16–20 September 2012; (GBIR) Association of State Dam Safety Officials-Dam Safety: Lexington, KY, USA, 2012; pp. 1195–1209. [Google Scholar]
- Di Pasquale, A.; Corsetti, M.; Guccione, P.; Lugli, A.; Nicoletti, M.; Nico, G.; Zonno, M. Ground-based SAR interferometry as a supporting tool in natural and man-made disasters. In Proceedings of the 33rd EARSel Symposium, Matera, Italy, 3–6 June 2013. [Google Scholar]
- Mascolo, L.; Nico, G.; Di Pasquale, A.; Pitullo, A. Use of advanced SAR monitoring techniques for the assessment of the behaviour of old embankment dams. In Proceedings of the SPIE Conference (9245) on Earth Resources and Environmental Remote Sensing/GIS Applications V, San Francisco, CA, USA, 4 November 2014; Michel, U., Schulz, K., Eds.; SPIE: San Francisco, CA, USA, 2014; p. 92450N. [Google Scholar]
- Ferrigno, F.; Gigli, G.; Fanti, R.; Intrieri, E.; Casagli, N. GB-InSAR monitoring and observational method for landslide emergency management: The Montaguto earthflow (AV, Italy). Nat. Hazards Earth Syst. Sci. 2017, 17, 845–860. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Luzi, G.; Cuevas, M.; Devanthéry, N. Deformation monitoring using ground-based SAR data. In Engineering Geology for Society and Territory; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 137–140. [Google Scholar]
- Xing, C.; Huang, J.J.; Han, X.Q. Research on the environmental effects of GB-SAR for dam monitoring. Adv. Mater. Res. 2014, 919–921, 392–397. [Google Scholar] [CrossRef]
- Luzi, G.; Pieraccini, M.; Mecatti, D.; Noferini, L.; Guidi, G.; Moia, F.; Atzeni, C. Ground-based radar interferometry for landslides monitoring: Atmospheric and instrumental decorrelation sources on experimental data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2454–2466. [Google Scholar] [CrossRef]
- Rödelsperger, S. Real-Time Processing of Ground Based Synthetic Aperture Radar (GB-SAR) Measurements. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2011. [Google Scholar]
- Iannini, L.; Guarnieri, A.M. Atmospheric phase screen in ground-based radar: Statistics and compensation. IEEE Geosci. Remote Sens. Lett. 2011, 8, 537–541. [Google Scholar] [CrossRef]
- Iglesias, R.; Fabregas, X.; Aguasca, A.; Mallorqui, J.J.; Lopez-Martinez, C.; Gili, J.A.; Corominas, J. Atmospheric phase screen compensation in ground-based SAR with a multiple-regression model over mountainous regions. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2436–2449. [Google Scholar] [CrossRef]
- Qiu, Z.; Yue, J.; Wang, X.; Yue, S. Deformation monitoring of large structures by ground-based sar interferometry. Bull. Ciênc. Geod. 2016, 22, 35–53. [Google Scholar] [CrossRef]
- Huang, Q.; Luzi, G.; Monserrat, O.; Crosetto, M. Ground-based synthetic aperture radar interferometry for deformation monitoring: A case study at Geheyan Dam, China. J. Appl. Remote Sens. 2017, 11, 036030. [Google Scholar] [CrossRef]
- Scaioni, M.; Roncoroni, F.; Alba, M.I.; Giussani, A.; Manieri, M. Ground-based real-aperture radar for deformation monitoring: Experimental tests. In Lecture Notes in Computer Science, Proceedings of the Computational Science and Its Applications—ICCSA 2017, Trieste, Italy, 3–6 July 2017; Springer International Publishing: Cham, Switzerland, 2017; Volume 10407, pp. 137–151. [Google Scholar]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef] [Green Version]
- Grenerczy, G.; Wegmüller, U. Persistent scatterer interferometry analysis of the embankment failure of a red mud reservoir using ENVISAT ASAR data. Nat. Hazards 2011, 59, 1047. [Google Scholar] [CrossRef]
- Wang, T.; Perissin, D.; Rocca, F.; Liao, M.-S. Three Gorges Dam stability monitoring with time-series InSAR image analysis. Sci. China Earth Sci. 2011, 54, 720–732. [Google Scholar] [CrossRef]
- Wang, Z.; Perissin, D. Cosmo SkyMed AO projects—3D reconstruction and stability monitoring of the Three Gorges dam. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; IEEE: Munich, Germany, 2012; pp. 3831–3834. [Google Scholar]
- Tomás, R.; Cano, M.; García-Barba, J.; Vicente, F.; Herrera, G.; Lopez-Sanchez, J.M.; Mallorquí, J.J. Monitoring an earthfill dam using differential SAR interferometry: La Pedrera dam, Alicante, Spain. Eng. Geol. 2013, 157, 21–32. [Google Scholar] [CrossRef]
- Anghel, A.; Vasile, G.; Boudon, R.; D’Urso, G.; Girard, A.; Boldo, D.; Bost, V. Combining spaceborne SAR images with 3D point clouds for infrastructure monitoring applications. ISPRS J. Photogramm. Remote Sens. 2016, 111, 45–61. [Google Scholar] [CrossRef]
- Michoud, C.; Baumann, V.; Derron, M.-H.; Jaboyedoff, M.; Lauknes, T.R. Slope instability detection along the National 7 and the Potrerillos dam reservoir, Argentina, using the small-baseline InSAR Technique. In Engineering Geology for Society and Territory; Lollino, G., Manconi, A., Clague, J., Shan, W., Chiarle, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 295–299. [Google Scholar]
- Fergason, K.C.; Rucker, M.L.; Panda, B.B.; Greenslade, M.D. Investigative procedures for assessing subsidence and earth fissure risk for dams and levees. In Engineering Geology for Society and Territory; Lollino, G., Manconi, A., Clague, J., Shan, W., Chiarle, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 695–698. [Google Scholar]
- Crosetto, M.; Monserrat, O.; Cuevas, M.; Crippa, B. Spaceborne differential SAR interferometry: Data analysis tools for deformation measurement. Remote Sens. 2011, 3, 305–318. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Lazecký, M.; Perissin, D.; Zhiying, W.; Ling, L.; Yuxiao, Q. Observing dam’s movements with spaceborne SAR interferometry. In Engineering Geology for Society and Territory; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Springer: Cham, Switzerland, 2015; pp. 131–136. [Google Scholar]
- Lazecky, M.; Perissin, D.; Lei, L.; Qin, Y.; Scaioni, M. Plover Cove Dam Monitoring with Spaceborne InSAR Technique in Hong Kong. In Proceedings of the 2nd Joint International Symposium on Deformation Monitoring, Nottingham, UK, 9–11 September 2013; pp. 9–11. [Google Scholar]
- Honda, K.; Nakanishi, T.; Haraguchi, M.; Mushiake, N.; Iwasaki, T.; Satoh, H.; Kobori, T.; Yamaguchi, Y. Application of exterior deformation monitoring of dams by DInSAR Analysis using ALOS PALSAR. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6649–6652. [Google Scholar]
- Di Martire, D.; Iglesias, R.; Monells, D.; Centolanza, G.; Sica, S.; Ramondini, M.; Pagano, L.; Mallorquí, J.J.; Calcaterra, D. Comparison between differential SAR interferometry and ground measurements data in the displacement monitoring of the earth-dam of Conza della Campania (Italy). Remote Sens. Environ. 2014, 148, 58–69. [Google Scholar] [CrossRef]
- Vöge, M.; Larsen, Y.; Frauenfelder, R. Monitoring dams and reservoir slopes with interferometric SAR. In Proceedings of the 8th International Symposium on Field Measurements in GeoMechanics, Berlin, Germany, 12–16 September 2011. [Google Scholar]
- Mura, J.; Gama, F.; Paradella, W.; Negrão, P.; Carneiro, S.; De Oliveira, C.; Brandão, W. Monitoring the vulnerability of the dam and dikes in Germano iron mining area after the collapse of the tailings dam of Fundão (Mariana-MG, Brazil) using DInSAR techniques with TerraSAR-X data. Remote Sens. 2018, 10, 1507. [Google Scholar] [CrossRef]
- Borghero, C. Feasibility study of dam deformation monitoring in Northern Sweden using Sentinel1 SAR interferometry. Master’s Thesis, University of Gävle, Gävle, Sweden, 2018. [Google Scholar]
- Hanssen, R.F.; Van Leijen, F.J. Monitoring water defense structures using radar interferometry. In Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, 26–30 May 2008; pp. 1–4. [Google Scholar]
- Osmanoğlu, B.; Sunar, F.; Wdowinski, S.; Cabral-Cano, E. Time series analysis of InSAR data: Methods and trends. ISPRS J. Photogramm. Remote Sens. 2015, 115, 90–102. [Google Scholar] [CrossRef]
- Giussani, A. Control of big structures by integrated instruments and methods. In Proceedings of the XVI Congress FIG, Montreux, Switzerland, 9–18 August 1981; p. 6. [Google Scholar]
- Khichar, R.; Upadhyay, S.S. Wireless sensor networks and their applications in geomatics: Case study on developments in developing countries. Appl. Geomat. 2010, 2, 43–48. [Google Scholar] [CrossRef]
- Chen, N.; Di, L.; Yu, G.; Min, M. A flexible geospatial sensor observation service for diverse sensor data based on web service. ISPRS J. Photogramm. Remote Sens. 2009, 64, 234–242. [Google Scholar] [CrossRef]
- Chrzanowski, A.; Szostak-Chrzanowski, A. Automation of deformation monitoring techniques and integration with prediction modelling. Geomatica 2010, 64, 221–232. [Google Scholar]
- Nico, G.; Di Pasquale, A.; Corsetti, M.; Di Nunzio, G.; Pitullo, A.; Lollino, P. Use of an advanced SAR monitoring technique to monitor old embankment dams. In Engineering Geology for Society and Territory; Lollino, G., Manconi, A., Clague, J., Shan, W., Chiarle, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 731–737. [Google Scholar]
- Alcay, S.; Yigit, C.O.; Inal, C.; Cevat, I.; Ayhan, C. Analysis of displacement response of the Ermenek dam monitored by an integrated geodetic and pendulum system. Int. J. Civ. Eng. 2018, 16, 1279–1291. [Google Scholar] [CrossRef]
- Stamatopoulos, C.; Petridis, P.; Bassanou, M.; Allkja, S.; Loukatos, N.; Small, A. Improvement of dynamic soil properties induced by preloading verified by a field test. Eng. Geol. 2013, 163, 101–112. [Google Scholar] [CrossRef]
- Stamatopoulos, C.; Petridis, P.; Bassanou, M.; Stamatopoulos, A. Increase in horizontal stress induced by preloading. Ground Improv. 2005, 9, 45–57. [Google Scholar] [CrossRef]
- Szostak-Chrzanowski, A.; Massiéra, M.; Chrzanowski, A.; Hill, C.J. Use of geodetic monitoring surveys in verifying design parameters of large earthen dams at the stage of filling the reservoir. In Proceedings of the 10th FIG International Symposium on Deformation Measurement, Orange, CA, USA, 19–22 March 2010. [Google Scholar]
- Elgamal, A.; Lai, T.; Yang, Z.; He, L. Dynamic soil properties, seismic downhole arrays and applications in practice. In Proceedings of the International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Rolla, MO, USA, 26–31 March 2001; Volume 6. [Google Scholar]
- Hekimoglu, S.; Erdogan, B.; Butterworth, S. Increasing the efficacy of the conventional deformation analysis methods: Alternative strategy. J. Surv. Eng. 2010, 140, 04014006. [Google Scholar] [CrossRef]
- Caspary, W.F. Concepts of Network and Deformation Analysis; Monograph 11, 2nd Corrected Impression; School of Surveying, University of New South Wales: Kensington, Australia, 1988; 183p. [Google Scholar]
- Konakoğlu, B.; Gökalp, E. Deformation measurements and analysis with robust methods: A case study, Deriner dam. Turk. J. Sci. Tech. 2018, 13, 99–103. [Google Scholar]
- Chen, Y.Q. Analysis of Deformation Surveys—A Generalized Method; Tech. Report 94, Dept. of Surveying Engineering; University of New Brunswick: Fredricton, NB, Canada, 1983. [Google Scholar]
- Caspary, W.F.; Borutta, H. Robust estimation in deformation models. Surv. Rev. 1987, 29, 29–45. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Chrzanowski, A.; Second, J.M. A strategy for the analysis of the stability of reference points in deformation surveys. CISM J. ACSGC 1990, 44, 141–149. [Google Scholar]
- Heck, B.; Kuntz, E.; Meier-Hirmer, B. Deformationsanalyse mittels relative Fehlerellipsen. Allg. Vermess. Nachr. 1977, 84, 78–87. [Google Scholar]
- Niemeier, W. Deformationsanalyse. In Geodätische Netze in Landes und Ingenieurvermessung II; Pelzer, H., Ed.; Konrad Wittwer: Stuttgart, Germany, 1985; pp. 559–623. (In German) [Google Scholar]
- Zou, J.; Thi Bui, K.T.; Xiao, Y.; Van Doan, C. Dam deformation analysis based on BPNN merging models. Geosp. Inf. Sci. 2018, 21, 149–157. [Google Scholar] [CrossRef]
- Mata, J. Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models. Eng. Struct. 2011, 33, 903–910. [Google Scholar] [CrossRef]
- Dai, W.; Huang, D.; Liu, B. A phase space reconstruction based single channel ICA algorithm and its application in dam deformation analysis. Surv. Rev. 2015, 47, 387–396. [Google Scholar] [CrossRef]
- Szostak-Chrzanowski, A. Interdisciplinary Approach to Deformation Analysis in Engineering, Mining, and Geosciences Projects by Combining Monitoring Surveys with Deterministic Modeling—Part I; Technical Science, Paper and Report, No. 9; University of Warmia and Mazuri: Olsztyn, Poland, 2006; pp. 147–172. [Google Scholar]
- Hariri-Ardebili, M.A. Risk, Reliability, Resilience (R3) and beyond in dam engineering: A state-of-the-art review. Int. J. Dis. Risk Reduct. 2018, 31, 806–831. [Google Scholar] [CrossRef]
- Szostak-Chrzanowski, A.; Deng, N.; Massiéra, M. Monitoring and deformation aspects of large concrete face dams. In Proceedings of the 4th IAG Symp. on Geodesy for Geotechnical and Structural Engineering/13th FIG Symp. on Deformation Measurements, Lisbon, Portugal, 21–24 May 2008. [Google Scholar]
- Chrzanowski, A.; Chen, Y.Q.; Secord, J.; Szostak-Chrzanowski, A.; Hayward, D.J.; Thompson, G.A.; Wroblewicz, Z. Integrated analysis of deformation surveys at Mactaquac. Int. Water Power Dam Constr. 1989, 8, 17–22. [Google Scholar]
- Acosta, L.E.; De Lacy, M.C.; Ramos, M.I.; Cano, J.P.; Herrera, A.M.; Avilés, M.; Gil, A.J. Displacements study of an earth fill dam based on high precision geodetic monitoring and numerical modeling. Sensors 2018, 18, 1369. [Google Scholar] [CrossRef] [PubMed]
- Turbide, S.; Marchese, L.; Terroux, M.; Bergeron, A. Synthetic Aperture Ladar concept for infrastructure monitoring. In Proceedings of the SPIE 9250, Electro-Optical Remote Sensing, Photonic Technologies, and Applications VIII and Military Applications in Hyperspectral Imaging and High Spatial Resolution Sensing II, San Francisco, CA, USA, 13 October 2014; SPIE: San Francisco, CA, USA, 2014; p. 92500B. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scaioni, M.; Marsella, M.; Crosetto, M.; Tornatore, V.; Wang, J. Geodetic and Remote-Sensing Sensors for Dam Deformation Monitoring. Sensors 2018, 18, 3682. https://doi.org/10.3390/s18113682
Scaioni M, Marsella M, Crosetto M, Tornatore V, Wang J. Geodetic and Remote-Sensing Sensors for Dam Deformation Monitoring. Sensors. 2018; 18(11):3682. https://doi.org/10.3390/s18113682
Chicago/Turabian StyleScaioni, Marco, Maria Marsella, Michele Crosetto, Vincenza Tornatore, and Jin Wang. 2018. "Geodetic and Remote-Sensing Sensors for Dam Deformation Monitoring" Sensors 18, no. 11: 3682. https://doi.org/10.3390/s18113682
APA StyleScaioni, M., Marsella, M., Crosetto, M., Tornatore, V., & Wang, J. (2018). Geodetic and Remote-Sensing Sensors for Dam Deformation Monitoring. Sensors, 18(11), 3682. https://doi.org/10.3390/s18113682