Digital, Rapid, Accurate, and Label-Free Enumeration of Viable Microorganisms Enabled by Custom-Built On-Glass-Slide Culturing Device and Microscopic Scanning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Preparation of On-Glass-Slide Bacteria Culturing Device
2.3. Preparation of Bacterial Samples
2.4. Imaging Bacterial Micro-Colonies Using Microscopic Scanning
2.5. Image Processing and Micro-Colony Enumeration
2.6. Bacteria Enumeration Using Conventional Agar Plate
3. Results and Discussion
3.1. Preparation and Evaluation of On-Glass-Slide Bacteria Culturing Device
3.2. Microscopic Scanning Micro-Colonies on a Large Sample Area
3.3. Micro-Colony Enumeration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wiegand, I.; Hilpert, K.; Hancock, R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Hazan, R.; Que, Y.A.; Maura, D.; Rahme, L.G. A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiol. 2012, 12, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, B. The value of cultures to modern microbiology. Antonie Van Leeuwenhoek 2017, 110, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Messer, J.W.; Rice, E.W.; Johnson, C.H. Total viable counts. Spread plate technique. Encycl. Food Microbiol. 2000, 3, 2159–2160. [Google Scholar]
- Davis, C. Enumeration of probiotic strains: Review of culture-dependent and alternative techniques to quantify viable bacteria. J. Microbiol. Methods 2014, 103, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Frost, H.R.; Tsoi, S.K.; Baker, C.A.; Laho, D.; Sanderson-Smith, M.L.; Steer, A.C.; Smeesters, P.R. Validation of an automated colony counting system for group A Streptococcus. BMC Res. Notes 2016, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Sutton, S. Accuracy of plate counts. J. Valid. Technol. 2011, 17, 42–46. [Google Scholar]
- Jennison, M.W.; Wadsworth, G.P. Evaluation of the Errors Involved in Estimating Bacterial Numbers by the Plating Method. J. Bacteriol. 1940, 39, 389–397. [Google Scholar] [PubMed]
- Snyder, T.L. The Relative Errors of Bacteriological Plate Counting Methods. J. Bacteriol. 1947, 54, 641–654. [Google Scholar] [PubMed]
- Wang, X.; Yamaguchi, N.; Someya, T.; Nasu, M. Rapid and automated enumeration of viable bacteria in compost using a micro-colony auto counting system. J. Microbiol. Methods 2007, 71, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Lee, J.E. Real-time bacterial microcolony counting using on-chip microscopy. Sci. Rep. 2016, 6, 21473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, W.D. Improved Technic for the Micro or Little Plate Method of Counting Bacteria in Milk. J. Infect. Dis. 1921, 28, 176–184. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, P.; Shan, S. Total microcolony counting on the moving narrow culture band. J. Microbiol. Methods 1995, 23, 297–300. [Google Scholar] [CrossRef]
- Maeda, Y.; Dobashi, H.; Sugiyama, Y.; Saeki, T.; Lim, T.K.; Harada, M.; Matsunaga, T.; Yoshino, T.; Tanaka, T. Colony fingerprint for discrimination of microbial species based on lensless imaging of microcolonies. PLoS ONE 2017, 12, e0174723. [Google Scholar] [CrossRef] [PubMed]
- Preibisch, S.; Saalfeld, S.; Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 2009, 25, 1463–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legesse, F.B.; Chernavskaia, O.; Heuke, S.; Bocklitz, T.; Meyer, T.; Popp, J.; Heintzmann, R. Seamless stitching of tile scan microscope images. J. Microsc. 2015, 258, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Deng, Z.S.; Fan, Q.H. A method for fast automated microscope image stitching. Micron 2013, 48, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Zimmermann, T.; Rohde, M.; Winkelbach, S.; He, F.; Lindenmaier, W.; Dittmar, K.E. Use of Autostitch for automatic stitching of microscope images. Micron 2007, 38, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, U.M.; Kroll, R.G. Rapid selective enumeration of bacteria in foods using a microcolony epifluorescence microscopy technique. J. Appl. Bacteriol. 1988, 64, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Baumstummler, A.; Chollet, R.; Meder, H.; Olivieri, F.; Rouillon, S.; Waiche, G.; Ribault, S. Development of a nondestructive fluorescence-based enzymatic staining of microcolonies for enumerating bacterial contamination in filterable products. J. Appl. Microbiol. 2011, 110, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, P.A.; McElfresh, C.; Wong, L.R.; Ideker, T. Beyond Agar: Gel Substrates with Improved Optical Clarity and Drug Efficiency and Reduced Autofluorescence for Microbial Growth Experiments. Appl. Environ. Microbiol. 2015, 81, 5639–5649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.T.; Weiss, R. Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana. Nat. Biotechnol. 2005, 23, 1551–1555. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.H.; Ko, W.H. Water agarose medium for studying factors affecting germination of conidia of Ampelomyces quisqualis. Mycol. Res. 1997, 101, 422–424. [Google Scholar] [CrossRef]
- Choi, J.; Kang, J.S.; Hong, S.C.; Bae, G.N.; Jung, J.H. A new method for the real-time quantification of airborne biological particles using a coupled inertial aerosol system with in situ fluorescence imaging. Sens. Actuators B Chem. 2017, 244, 635–641. [Google Scholar] [CrossRef]
- Hong, W.; Karanja, C.W.; Abutaleb, N.S.; Younis, W.; Zhang, X.; Seleem, M.N.; Cheng, J.X. Antibiotic Susceptibility Determination within One Cell Cycle at Single-Bacterium Level by Stimulated Raman Metabolic Imaging. Anal. Chem. 2018, 90, 3737–3743. [Google Scholar] [CrossRef] [PubMed]
- Karanja, C.W.; Hong, W.; Younis, W.; Eldesouky, H.E.; Seleem, M.N.; Cheng, J.X. Stimulated Raman Imaging Reveals Aberrant Lipogenesis as a Metabolic Marker for Azole-Resistant Candida albicans. Anal. Chem. 2017, 89, 9822–9829. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Jung, Y.G.; Kim, J.; Kim, S.; Jung, Y.; Na, H.; Kwon, S. Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system. Lab Chip 2013, 13, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Wimpenny, J.W. The effects of agar concentration on the growth and morphology of submerged colonies of motile and non-motile bacteria. J. Appl. Microbiol. 1997, 83, 76–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, P.T.; Liao, C.T.; Roan, J.R.; Wang, S.H.; Chiou, A.; Syu, W.J. Bacterial colony from two-dimensional division to three-dimensional development. PLoS ONE 2012, 7, e48098. [Google Scholar] [CrossRef] [PubMed]
- Jonkman, J.; Brown, C.M. Any Way You Slice It—A Comparison of Confocal Microscopy Techniques. J. Biomol. Tech. 2015, 26, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Gopinathan, K. Confocal microscopy: A powerful technique for biological research. Curr. Sci. 1998, 74, 841–851. [Google Scholar]
- Wright, S.J.; Centonze, V.E.; Stricker, S.A.; DeVries, P.J.; Paddock, S.W.; Schatten, G. Chapter 1 Introduction to Confocal Microscopy and Three-Dimensional Reconstruction. In Methods in Cell Biology; Matsumoto, B., Ed.; Academic Press: San Diego, CA, USA, 1993; Volume 38, pp. 1–45. [Google Scholar]
- Shotton, D.; White, N. Confocal scanning microscopy: Three-dimensional biological imaging. Trends Biochem. Sci. 1989, 14, 435–439. [Google Scholar] [CrossRef]
- Guo, K.; Liao, J.; Bian, Z.; Heng, X.; Zheng, G. InstantScope: A low-cost whole slide imaging system with instant focal plane detection. Biomed. Opt. Express 2015, 6, 3210–3216. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Wang, Z.; Zhang, Z.; Bian, Z.; Guo, K.; Nambiar, A.; Jiang, Y.; Jiang, S.; Zhong, J.; Choma, M.; et al. Dual light-emitting diode-based multichannel microscopy for whole-slide multiplane, multispectral and phase imaging. J. Biophotonics 2018, 11. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Jiang, S.; Zhang, Z.; Guo, K.; Bian, Z.; Jiang, Y.; Zhong, J.; Zheng, G. Terapixel hyperspectral whole-slide imaging via slit-array detection and projection. J. Biomed. Opt. 2018, 23, 1–7. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, D.; Liu, H.; Dong, Q.; Bian, Z.; Wu, H.; Lei, Y. Digital, Rapid, Accurate, and Label-Free Enumeration of Viable Microorganisms Enabled by Custom-Built On-Glass-Slide Culturing Device and Microscopic Scanning. Sensors 2018, 18, 3700. https://doi.org/10.3390/s18113700
Song D, Liu H, Dong Q, Bian Z, Wu H, Lei Y. Digital, Rapid, Accurate, and Label-Free Enumeration of Viable Microorganisms Enabled by Custom-Built On-Glass-Slide Culturing Device and Microscopic Scanning. Sensors. 2018; 18(11):3700. https://doi.org/10.3390/s18113700
Chicago/Turabian StyleSong, Donghui, Haomin Liu, Qiuchen Dong, Zichao Bian, Huixiang Wu, and Yu Lei. 2018. "Digital, Rapid, Accurate, and Label-Free Enumeration of Viable Microorganisms Enabled by Custom-Built On-Glass-Slide Culturing Device and Microscopic Scanning" Sensors 18, no. 11: 3700. https://doi.org/10.3390/s18113700