An Optical Fiber Sensor Based on La2O2S:Eu Scintillator for Detecting Ultraviolet Radiation in Real-Time
Abstract
:1. Introduction
2. Design and Principle of UVOFS
2.1. Structure of the UVOFS
2.2. Scintillation Material Emission Principle
3. Experimental Setup
4. Experimental Results
4.1. The Linearity of the Response to UV Light of the Scintillating Materials
4.2. Repeatability of the UVOFS
4.3. UVOFS Temperature Characteristics
4.4. UVOFS Response Time Analysis
4.5. Comparison of the UVOFS and an Ultraviolet Radiometer
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agafonova, D.S.; Kolobkova, E.V.; Ignatiev, A.I.; Nikonorov, N.V.; Shakhverdov, T.A.; Shirshnev, P.S.; Sidorov, A.I.; Vasiliev, V.N. Luminescent glass fiber sensors for ultraviolet radiation detection by the spectral conversion. Opt. Eng. 2015, 54. [Google Scholar] [CrossRef]
- De Silva, M.B.; Tencomnao, T. The protective effect of some Thai plants and their bioactive compounds in UV light-induced skin carcinogenesis. J. Photochem. Photobiol. B Biol. 2018, 185, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Rocco, M.L.; Balzamino, B.O.; Aloe, L.; Micera, A. NGF protects corneal, retinal, and cutaneous tissues/cells from phototoxic effect of UV exposure. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-F.; Liu, X.-M.; Huang, D.-R.; Cao, H.-J.; Wang, J.-Y. PF-06409577 activates AMPK signaling to protect retinal pigment epithelium cells from UV radiation. Biochem. Biophys. Res. Commun. 2018, 501, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Ethington, T.; Newsome, S.; Waugh, J.; Lee, L.D. Cleaning the air with ultraviolet germicidal irradiation lessened contact infections in a long-term acute care hospital. Am. J. Infect. Control 2018, 46, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Kang, D.H. UVC LED Irradiation Effectively Inactivates Aerosolized Viruses, Bacteria, and Fungi in a Chamber-Type Air Disinfection System. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.Y.; Li, Q.L.; Yu, J.T.; Yin, D.Y. The Measurement Study and Analysis of Ultraviolet Features of High Voltage Arc and Coronaindoors. Spectrosc. Spectr. Anal. 2018, 38, 1178–1183. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Sadler, B.M. Ultraviolet communications: Potential and state-of-the-art. IEEE Commun. Mag. 2008, 46, 67–73. [Google Scholar] [CrossRef]
- Hu, Y.S.; Qin, Z.; Ma, Y.; Zhao, W.H.; Sun, W.M.; Zhang, D.X.; Chen, Z.Y.; Wang, B.R.; Tian, H.; Lewis, E. Characterization of fiber radiation dosimeters with different embedded scintillator materials for radiotherapy applications. Sens. Actuators A Phys. 2018, 269, 188–195. [Google Scholar] [CrossRef]
- O’Keeffe, S.; Zhao, W.H.; Sun, W.M.; Zhang, D.X.; Qin, Z.; Chen, Z.Y.; Ma, Y.; Lewis, E. An Optical Fibre-Based Sensor for Real-Time Monitoring of Clinical Linear Accelerator Radiotherapy Delivery. IEEE J. Sel. Top. Quantum Electron. 2016, 22. [Google Scholar] [CrossRef]
- Qin, Z.; Hu, Y.; Ma, Y.; Lin, W.; Luo, X.; Zhao, W.; Sun, W.; Zhang, D.; Chen, Z.; Wang, B.; et al. Water-equivalent fiber radiation dosimeter with two scintillating materials. Biomed. Opt. Express 2016, 7, 4919–4927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, Q.; Yaosheng, H.; Yu, M.; Wenhui, Z.; Weimin, S.; Daxin, Z.; Ziyin, C.; Elfed, L. Embedded structure fiber-optic radiation dosimeter for radiotherapy applications. Opt. Express 2016, 24, 5172–5185. [Google Scholar] [CrossRef] [PubMed]
- Jong-Kuk, Y.; Gyoo-Won, S.; Kang-Min, C.; Eung-Soo, K.; Sung-Hoon, K.; Shin-Won, K. Controllable in-line UV sensor using a side-polished fiber coupler with photofunctional polymer. IEEE Photonics Technol. Lett. 2003, 15, 837–839. [Google Scholar] [CrossRef]
- Lyons, W.B.; Fitzpatrick, C.; Flanagan, C.; Lewis, E. A novel multipoint luminescent coated ultra violet fibre sensor utilising artificial neural network pattern recognition techniques. Sens. Actuators A Phys. 2004, 115, 267–272. [Google Scholar] [CrossRef]
- McSherry, M.; Fitzpatrick, C.; Lewis, E. An optical fiber sensor for the detection of germicidal UV irradiation using narrowband luminescent coatings. IEEE Sens. J. 2004, 4, 619–626. [Google Scholar] [CrossRef]
- Miluski, P.; Kochanowicz, M.; Zmojda, J.; Dorosz, D. UV radiation detection using optical sensor based on Eu3+ doped PMMA. Metrol. Meas. Syst. 2016, 23, 615–621. [Google Scholar] [CrossRef]
- Fern, G.; Ireland, T.; Silver, J.; Withnall, R.; Michette, A.; McFaul, C.; Pfauntsch, S. Characterisation of Gd2O2S:Pr phosphor screens for water window X-ray detection. Nucl. Instrum. Methods Phys. Res. A 2009, 600, 434–439. [Google Scholar] [CrossRef]
- David, S.; Georgiou, M.; Loudos, G.; Michail, C.; Fountos, G.; Kandarakis, I. Evaluation of powder/granular Gd2O2S:Pr scintillator screens in single photon counting mode under 140 keV excitation. J. Instrum. 2013, 8. [Google Scholar] [CrossRef]
- Kandarakis, I.; Cavouras, D.; Panayiotakis, G.; Agelis, T.; Nomicos, C.; Giakoumakis, G. X-ray induced luminescence and spatial resolution of La2O2S:Tb phosphor screens. Phys. Med. Biol. 1996, 41, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.-L.; Wang, J.-M.; Wang, Y.-F.; Chen, L.; Yang, B.-R. Emission properties of scintillator crystal CsI:Tl excited by X-ray and UV light. Faguang Xuebao/Chin. J. Lumin. 2010, 31, 831–835. (In Chinese) [Google Scholar]
- Trefilova, L.; Grinyov, B.; Alekseev, V.; Golub, I.; Yakovlev, V.; Meleshko, A. The reasons the scintillation efficiency decrease of CsI(Tl) crystals exposed by the high-dosed radiation. Radiat. Meas. 2007, 42, 839–842. [Google Scholar] [CrossRef]
- Trefilova, L.N.; Charkina, T.; Kudin, A.; Kosinov, N.; Kovaleva, L.; Mitichkin, A. Radiation defects creation in CsI(Tl) crystals and their luminescence properties. J. Lumin. 2003, 102, 543–550. [Google Scholar] [CrossRef]
Radiometer (μW/cm2) | UVOFS (μW/cm2) | Error (%) |
---|---|---|
50 | 51.33 | 2.27 |
60 | 60.78 | 1.30 |
70 | 70.40 | 0.58 |
80 | 80.13 | 0.16 |
90 | 90.39 | 0.43 |
100 | 99.95 | 0.05 |
110 | 109.79 | 0.20 |
120 | 120.20 | 0.17 |
130 | 130.18 | 0.14 |
140 | 140.17 | 0.12 |
150 | 149.47 | 0.35 |
Test Group | Radiometer (μW/cm2) | UV Intensity (counts) | Fluorescence Intensity (counts) | UVOFS (μW/cm2) |
---|---|---|---|---|
1 | 50.0 | 1649 | 10,072 | 43.91 |
2 | 50.0 | 2037 | 12,388 | 51.04 |
3 | 50.2 | 2002 | 12,288 | 50.73 |
4 | 50.0 | 2052 | 12,579 | 51.63 |
5 | 60.0 | 2425 | 14,783 | 58.42 |
6 | 60.2 | 2604 | 15,643 | 61.07 |
7 | 60.0 | 2442 | 15,264 | 59.90 |
8 | 60.0 | 2560 | 15,744 | 61.38 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Zhang, X.; Li, H.; Ma, Y.; Xie, T.; Qin, Z.; Liu, S.; Sun, W.; Lewis, E. An Optical Fiber Sensor Based on La2O2S:Eu Scintillator for Detecting Ultraviolet Radiation in Real-Time. Sensors 2018, 18, 3754. https://doi.org/10.3390/s18113754
Yan Y, Zhang X, Li H, Ma Y, Xie T, Qin Z, Liu S, Sun W, Lewis E. An Optical Fiber Sensor Based on La2O2S:Eu Scintillator for Detecting Ultraviolet Radiation in Real-Time. Sensors. 2018; 18(11):3754. https://doi.org/10.3390/s18113754
Chicago/Turabian StyleYan, Yongji, Xu Zhang, Haopeng Li, Yu Ma, Tianci Xie, Zhuang Qin, Shuangqiang Liu, Weimin Sun, and Elfed Lewis. 2018. "An Optical Fiber Sensor Based on La2O2S:Eu Scintillator for Detecting Ultraviolet Radiation in Real-Time" Sensors 18, no. 11: 3754. https://doi.org/10.3390/s18113754
APA StyleYan, Y., Zhang, X., Li, H., Ma, Y., Xie, T., Qin, Z., Liu, S., Sun, W., & Lewis, E. (2018). An Optical Fiber Sensor Based on La2O2S:Eu Scintillator for Detecting Ultraviolet Radiation in Real-Time. Sensors, 18(11), 3754. https://doi.org/10.3390/s18113754