Time- and Space-Varying Atmospheric Phase Correction in Discontinuous Ground-Based Synthetic Aperture Radar Deformation Monitoring
Abstract
:1. Introduction
2. Ground-Based Synthetic Aperture Radar Signal Model and Atmospheric Phase Model
3. Time- and Space-Varying Atmospheric Phase Correction Algorithm
3.1. Coherent Scatterers Extraction Using a Single Ground-Based Synthetic Aperture Radar Pair
3.2. Local Spatial Consistency Analysis of the Atmospheric Phase
3.3. Time- and Space-Varying Atmospheric Phase Estimation and Correction.
4. Experimental Results
4.1. First Case Study: Field Measurements in Northern China
4.2. Second Case Study: Field Measurements in Southern China
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tarchi, D.; Casagli, N.; Fanti, R.; Leva, D.D.; Luzi, G.; Pasuto, A.; Pieraccini, M.; Silvano, S. Landslide monitoring by using ground-based SAR interferometry: An example of application to the Tessina landslide in Italy. Eng. Geol. 2003, 68, 15–30. [Google Scholar] [CrossRef]
- Luzi, G.; Pieraccini, M.; Mecatti, D.; Noferini, L.; Guidi, G.; Moia, F.; Atzeni, C. Ground-based radar interferometry for landslides monitoring: Atmospheric and instrumental decorrelation sources on experimental data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2454–2466. [Google Scholar] [CrossRef]
- Leva, D.; Nico, G.; Tarchi, D.; Fortuny-Guasch, J.; Sieber, A.J. Temporal analysis of a landslide by means of a ground-based SAR Interferometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 745–752. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Luzi, G.; Cuevas, M.; Devanthéry, N. Deformation monitoring using ground-based SAR data. Eng. Geol. Soc. Territ. 2015, 5, 137–140. [Google Scholar]
- Hu, C.; Wang, J.Y.; Tian, W.M.; Zeng, T.; Wang, R. Design and Imaging of Ground-Based Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO SAR) with Non-Collinear Arrays. Sensors 2017, 17, 598. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.S.; Sun, J.P.; Tan, W.X.; Huang, P.P.; Han, K.Y. Investigation of Wavenumber Domain Imaging Algorithm for Ground-Based Arc Array SAR. Sensors 2017, 17, 2950. [Google Scholar] [CrossRef]
- Luo, Y.; Song, H.; Wang, R.; Deng, Y.; Zhao, F.; Xu, Z. Arc FMCW SAR and applications in ground monitoring. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5989–5998. [Google Scholar] [CrossRef]
- Tarchi, D.; Oliveri, F.; Sammartino, P.F. MIMO radar and ground-based SAR imaging systems: Equivalent approaches for remote sensing. IEEE Trans. Geosci. Remote Sens. 2013, 51, 425–435. [Google Scholar] [CrossRef]
- Bardi, F.; Raspini, F.; Ciampalini, A.; Kristensen, L.; Rouyet, L.; Lauknes, T.R.; Frauenfelder, R.; Casagli, N. Space Borne and Ground Based InSAR Data Integration: The Åknes Test Site. Remote Sens. 2016, 8, 237. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, R.; Fabregas, X.; Aguasca, A.; Mallorqui, J.J.; López-Martínez, C.; Gili, J.A.; Corominas, J. Atmospheric Phase Screen Compensation in Ground-Based SAR with a Multiple-Regression Model over Mountainous Regions. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2436–2449. [Google Scholar] [CrossRef]
- Noferini, L.; Pieraccini, M.; Mecatti, D.; Luzi, G.; Atzeni, C.; Tamburini, A.; Broccolato, M. Permanent scatterers analysis for atmospheric correction in ground-based SAR interferometry. IEEE Trans. Geosci. Remote Sen. 2005, 43, 1459–1471. [Google Scholar] [CrossRef]
- Iannini, L.; Guarnieri, A.M. Atmospheric phase screen in ground-based radar: Statistics and compensation. IEEE Trans. Geosci. Remote Sens. Lett. 2011, 8, 537–541. [Google Scholar] [CrossRef]
- Rödelsperger, S. Real-Time Processing of Ground Based Synthetic Aperture Radar (GB-SAR) Measurements. Ph.D. Thesis, Technische Universitay Darmstadt, Darmstadt, Germany, 2011. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear Subsidence Rate Estimation using Permanent Scatterers in Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Luzi, G.; Cuevas-González, M. Discontinuous GBSAR deformation monitoring. ISPRS J. Photogramm. Remote Sens. 2014, 93, 136–141. [Google Scholar] [CrossRef]
- Barla, M.; Antolini, F.; Bertolo, D.; Thuegaz, P.; D’Aria, D.; Amoroso, G. Remote monitoring of the Comba Citrin landslide using discontinuous GBInSAR campaigns. Eng. Geol. 2017, 222, 111–123. [Google Scholar] [CrossRef]
- Zou, L.L.; Sato, M. Detection of coherent scatterers by frequency interleaved sub-images entropy in GB-SAR. In Proceedings of the IEEE International Workshop on Advanced Ground Penetrating Radar, Florence, Italy, 7–10 July 2015. [Google Scholar]
- Huang, Z.S.; Qi, Y.L.; Sun, J.P.; Tan, W.X.; Huang, P.P. Atmospheric Phase Correction Based on Coherent Scatterers in GB-SAR Interferometry Using a Single InSAR Pair. In Proceedings of the Progress in Electromagnetic Research Symposium, Shanghai, China, 8–11 August 2016. [Google Scholar]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Yang, H.; Cai, J.; Peng, J.; Wang, J.; Qiao, J. A correcting method about GB-SAR rail displacement. Int. J. Remote Sens. 2017, 38, 1483–1493. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Zebker, H.A.; Werner, C.L. Satellite radar interferomertry: Two-dimensional phase unwrapping. Radio Sci. 1988, 23, 713–720. [Google Scholar] [CrossRef]
- Dai, Z.Y.; Zha, X.J. An accurate phase unwrapping algorithm based on reliability sorting and residue mask. IEEE Trans. Geosci. Remote Sens. Lett. 2012, 9, 219–223. [Google Scholar] [CrossRef]
- Gao, D.P.; Yin, F.L. Mask cut optimization in two-dimensional phase unwrapping. IEEE Trans. Geosci. Remote Sens. Lett. 2012, 9, 338–342. [Google Scholar] [CrossRef]
- Ghiglia, D.C.; Pritt, M.D. Two-Dimemsional Phase-Unwrapping: Theory, Algorithms, and Software, 1st ed.; Wiley- Interscience: New York, NY, USA, 1998; pp. 137–141. [Google Scholar]
- Huang, Q.; Zhou, H.; Dong, S.C.; Xu, S.J. Parallel branch-cut algorithm based on simulated annealing for large-scale phase unwrapping. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3833–3846. [Google Scholar] [CrossRef]
- Iglesias, R.; Mallorqui, J.J.; Monells, D.; López-Martínez, C.; Fabregas, X.; Aguasca, A.; Gili, J.A.; Corominas, J. PSI Deformation Map Retrieval by Means of Temporal Sublook Coherence on Reduced Sets of SAR Images. Remote Sens. 2015, 7, 530–563. [Google Scholar] [CrossRef] [Green Version]
- Soumekh, M. Synthetic Aperture Radar Signal Processing with Matlab Algorithms; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Cumming, I.G.; Wong, F. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Norwood, MA, USA, 2004; pp. 30–45. [Google Scholar]
- Hooper, A.; Zebker, H.A.; Segall, P. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, 1–5. [Google Scholar] [CrossRef]
- Isenburg, M.; Liu, Y.; Shewchuk, J. Streaming computation of Delaunay triangulations. ACM Trans. Graph. 2006, 25, 1049–1056. [Google Scholar] [CrossRef]
- Rebay, S. Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation and Bowyer-Watson Algorithm; Academic Press Professional, Inc.: Cambridge, MA, USA, 1993. [Google Scholar]
- Bamler, R.; Harsley, S. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, 12–13. [Google Scholar] [CrossRef]
Symbol | Parameters | Value |
---|---|---|
fc | Center frequency | 17 GHz |
Br | Bandwidth | 500 MHz |
La | Rail length | 2 m |
Nr | Frequency points | 10,001 |
Na | Azimuth points | 201 |
δr | Range resolution | 0.3 m |
δa | Azimuth resolution | 4.3 mrad |
θa | Antenna beamwidth | 60° |
Corner Reflectors | Uncorrected Deformation (mm) | Linear Correction (mm) | Our Method Correction(mm) | Total Station (mm) |
---|---|---|---|---|
C1 | 3.0 | 1.1 | 0.2 | 0.5 |
C2 | 2.6 | 0.8 | −0.1 | 0.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Sun, J.; Li, Q.; Tan, W.; Huang, P.; Qi, Y. Time- and Space-Varying Atmospheric Phase Correction in Discontinuous Ground-Based Synthetic Aperture Radar Deformation Monitoring. Sensors 2018, 18, 3883. https://doi.org/10.3390/s18113883
Huang Z, Sun J, Li Q, Tan W, Huang P, Qi Y. Time- and Space-Varying Atmospheric Phase Correction in Discontinuous Ground-Based Synthetic Aperture Radar Deformation Monitoring. Sensors. 2018; 18(11):3883. https://doi.org/10.3390/s18113883
Chicago/Turabian StyleHuang, Zengshu, Jinping Sun, Qing Li, Weixian Tan, Pingping Huang, and Yaolong Qi. 2018. "Time- and Space-Varying Atmospheric Phase Correction in Discontinuous Ground-Based Synthetic Aperture Radar Deformation Monitoring" Sensors 18, no. 11: 3883. https://doi.org/10.3390/s18113883
APA StyleHuang, Z., Sun, J., Li, Q., Tan, W., Huang, P., & Qi, Y. (2018). Time- and Space-Varying Atmospheric Phase Correction in Discontinuous Ground-Based Synthetic Aperture Radar Deformation Monitoring. Sensors, 18(11), 3883. https://doi.org/10.3390/s18113883