A FAST-BRISK Feature Detector with Depth Information
Abstract
:1. Introduction
2. Related Work
3. BRISK Algorithm Principle
3.1. Scale-Space KeyPoint Detection
3.2. Keypoint Description
3.3. BRISK Descriptor Matching
4. Improvement of BRISK Algorithm (BRISK_D Algorithm)
4.1. Improvement Ideas
4.2. Precise Location of Interest Points
4.3. Compute Scale Factor Using Depth Information
4.4. Orientation by Intensity Centroid
5. Experimental Results and Analysis
5.1. Indoor Images in Our Lab
5.2. Freiburg Dataset
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Wang, L.; Yu, J. Depth-image based on 3D map reconstruction of indoor environment for mobile robots. J. Comput. Appl. 2014, 34, 3438–3440. [Google Scholar]
- Sen, L.; Weiqi, Y.; Song, H. Application of binary robust invariant scalable keypoints in non-contact palmprint recognition. Chin. J. Sci. Instrum. 2013, 34, 2785–2792. [Google Scholar]
- Zhang, Y.; Zou, Z. Automatic registration method for remote sensing images based on improved ORB algorithm. Remote Sens. Land Resour. 2013, 25, 20–24. [Google Scholar]
- Bostanci, E.; Kanwal, N.; Clark, A.F. Feature coverage for better homography estimation: An application to image stitching. In Proceedings of the 19th International Conference on Systems, Signals and Image Processing, Vienna, Austria, 11–13 April 2012; pp. 448–451. [Google Scholar]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Park, E.A.; Han, J.; Park, D.C.; Min, S.Y. Object Detection Using Scale Invariant Feature Transform; Springer International Publishing: Berlin, Germany, 2014; pp. 65–72. [Google Scholar]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-Up Robust Features. Comput. Vis. Image Underst. 2008, 110, 404–417. [Google Scholar] [CrossRef]
- Boulkenafet, Z.; Komulainen, J.; Hadid, A. Face Antispoofing Using Speeded-Up Robust Features and Fisher Vector Encoding. IEEE Signal Proc. Lett. 2017, 24, 141–145. [Google Scholar]
- Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. BRIEF: Binary robust independent elementary features. In Proceedings of the 11th European Conference on Computer Vision: Part IV, Heraklion, Greece, 5–11 September 2010; pp. 778–792. [Google Scholar]
- Mohammad, S.; Morris, T. Binary Robust Independent Elementary Feature Features for Texture Segmentation. Adv. Sci. Lett. 2017, 23, 5178–5182. [Google Scholar] [CrossRef]
- Leutenegger, S.; Chli, M.; Siegwart, R.Y. BRISK: Binary Robust invariant scalable keypoints. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2548–2555. [Google Scholar]
- Zhou, M.; Zhang, G.; Hu, X.; Sun, D.; Xiao, J. SAR real-time guidance system based on multi-scale FAST-BRISK. In Proceedings of the 13th IEEE International Conference on Control & Automation, Ohrid, Macedonia, 3–6 July 2017; pp. 425–430. [Google Scholar]
- Attneave, F. Some informational aspects of visual perception. Psychol. Rev. 1954, 61, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Morevec, H.P. Towards Automatic Visual Obstacle Avoidance. In Proceedings of the 5th International Joint Conference on Artificial Intelligence, Cambridge, MA, USA, 22–25 August 1977; Volume 2, p. 584. [Google Scholar]
- Beaudet, P.R. Rotationally invariant image operators. In Proceedings of the 4th International Joint Conference on Pattern Recognition, Kyoto, Japan, 7–10 November 1978; pp. 579–583. [Google Scholar]
- Lindeberg, T. Feature Detection with Automatic Scale Selection. Int. J. Comput. Vis. 1998, 30, 79–116. [Google Scholar] [CrossRef] [Green Version]
- Alcantarilla, P.F.; Bartoli, A.; Davison, A.J. KAZE Features. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; pp. 214–227. [Google Scholar]
- Liang, H.; Fan, Y.; Wan, H.; Ding, Y. Mosaic Algorithm of UAV Images Based on AKAZE Features. J. Geomat. Sci. Technol. 2016, 33, 71–75. [Google Scholar]
- Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the 4th Alvey Vison Conference, Manchester, UK, 31 August–2 September 1988; pp. 147–151. [Google Scholar]
- Shi, J. Good Feature to Track. In Proceedings of the 1994 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 593–600. [Google Scholar]
- Lindeberg, T.; Garding, J. Shape from texture from a multi-scale perspective. In Proceedings of the 4th International Conference on Computer Vision, Berlin, Germany, 11–14 May 1993; pp. 683–691. [Google Scholar]
- Lindeberg, T. Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 1998, 30, 117–156. [Google Scholar] [CrossRef]
- Mikolajczyk, K.; Schmid, C. Affine Invariant Interest Point Detectors. Int. J. Comput. Vis. 2004, 60, 63–86. [Google Scholar] [CrossRef]
- Viola, P.; Jones, M. Rapid Object Detection using a Boosted Cascade of Simple Features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001; pp. 511–517. [Google Scholar]
- Bay, H.; Tuytelaars, T.; Gool, L.V. SURF: Speeded up robust features. In Proceedings of the European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; pp. 404–417. [Google Scholar]
- Rosten, E.; Drummond, T. Machine Learning for High-Speed Corner Detection. In Proceedings of the 9th European conference on Computer Vision—Volume Part I, Graz, Austria, 7–13 May 2006; pp. 430–443. [Google Scholar]
- Rosten, E.; Porter, R.; Drummond, T. Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Brady, J.M. SUSAN—A New Approach to Low Level Image Processing. Int. J. Comput. Vis. 1997, 23, 45–78. [Google Scholar] [CrossRef]
- Guiducci, A. Corner characterization by differential geometry techniques. Pattern Recognit. Lett. 1988, 8, 311–318. [Google Scholar] [CrossRef]
- Mair, E.; Hager, G.D.; Burschka, D.; Suppa, M.; Hirzinger, G. Adaptive and Generic Corner Detection Based on the Accelerated Segment Test. In Proceedings of the 11th European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; pp. 183–196. [Google Scholar]
- Efiddvaj, E.; Inzv, B.; Baazvdbjv, I.; Ifbjndfi, V.; Zbdsfv, F.B.; Cndef, B.; Biv, D.; Zfev, T.T.; Fiodvf, B.; Cbifev, I. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Calonder, M.; Lepetit, V.; Ozuysal, M.; Trzcinski, T.; Strecha, C.; Fua, P. BRIEF: Computing a Local Binary Descriptor Very Fast. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1281–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tola, E.; Lepetit, V.; Fua, P. DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 815–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosin, P.L. Measuring Corner Properties. Comput. Vis. Image Underst. 1999, 73, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, E.R.; Oliveira, G.L.; Campos, M.F.M.; Vieira, A.W.; Schwartz, W.R. BRAND: A robust appearance and depth descriptor for RGB-D images. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 1720–1726. [Google Scholar]
- Khan, S.; Saleem, Z. A Comparative Analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK. In Proceedings of the International Conference on Computing, Mathematics and Engineering Technologies, Sukkur, Pakistan, 3–4 March 2018. [Google Scholar]
- Mikolajczyk, K.; Schmid, C. A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1615–1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reference Image | SURF Algorithm | BRISK Algorithm | BRISK_D Algorithm | |||
---|---|---|---|---|---|---|
Quantity | Time (/ms) | Quantity | Time (/ms) | Quantity | Time (/ms) | |
Image A | 2065 | 466 | 469 | 47 | 1099 | 51 |
Image B | 1467 | 301 | 323 | 31 | 726 | 32 |
Image C | 1945 | 374 | 384 | 38 | 821 | 39 |
Image D | 1863 | 324 | 210 | 32 | 678 | 35 |
Reference Image | SURF Algorithm | BRISK Algorithm | BRISK_D Algorithm | |||
---|---|---|---|---|---|---|
Quantity | Time (/ms) | Quantity | Time (/ms) | Quantity | Time (/ms) | |
Image A | 1941 | 186 | 443 | 17 | 1045 | 41 |
Image B | 1356 | 113 | 318 | 12 | 719 | 28 |
Reference Image | Scaling Bits | SURF Algorithm | BRISK Algorithm | BRISK_D Algorithm |
---|---|---|---|---|
Image A | 0.25 | 1052 | 67 | 213 |
0.5 | 1299 | 105 | 258 | |
2 | 1145 | 91 | 289 | |
4 | 985 | 84 | 157 | |
Image B | 0.25 | 689 | 39 | 105 |
0.5 | 744 | 59 | 142 | |
2 | 763 | 61 | 127 | |
4 | 587 | 32 | 118 |
Reference Image | Rotation Angle | SURF Algorithm | BRISK Algorithm | BRISK_D Algorithm |
---|---|---|---|---|
Image A | 0 | 1941 | 443 | 1045 |
90 | 774 | 124 | 316 | |
180 | 1052 | 162 | 388 | |
270 | 875 | 107 | 294 | |
Image B | 0 | 1398 | 284 | 689 |
90 | 561 | 97 | 197 | |
180 | 812 | 124 | 215 | |
270 | 498 | 84 | 156 |
Reference Image | SURF Algorithm | BRISK Algorithm | BRISK_D Algorithm |
---|---|---|---|
Image A1 | 1698 | 257 | 645 |
Image A2 | 1427 | 127 | 317 |
Image A3 | 1124 | 71 | 164 |
Image A4 | 964 | 65 | 147 |
Image A5 | 681 | 57 | 138 |
Image A6 | 1823 | 327 | 467 |
Image A7 | 1532 | 294 | 398 |
Reference Image | SURF Algorithm | BRISK Algorithm | BRISK_D Algorithm |
---|---|---|---|
Image B1 | 1857 | 375 | 517 |
Image B2 | 1654 | 294 | 452 |
Image B3 | 1566 | 212 | 374 |
Image B4 | 1521 | 175 | 315 |
Image B5 | 1320 | 154 | 286 |
Image B6 | 1473 | 261 | 321 |
Image B7 | 1527 | 314 | 356 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, H.; Guo, H.; Xiong, N.N. A FAST-BRISK Feature Detector with Depth Information. Sensors 2018, 18, 3908. https://doi.org/10.3390/s18113908
Liu Y, Zhang H, Guo H, Xiong NN. A FAST-BRISK Feature Detector with Depth Information. Sensors. 2018; 18(11):3908. https://doi.org/10.3390/s18113908
Chicago/Turabian StyleLiu, Yanli, Heng Zhang, Hanlei Guo, and Neal N. Xiong. 2018. "A FAST-BRISK Feature Detector with Depth Information" Sensors 18, no. 11: 3908. https://doi.org/10.3390/s18113908
APA StyleLiu, Y., Zhang, H., Guo, H., & Xiong, N. N. (2018). A FAST-BRISK Feature Detector with Depth Information. Sensors, 18(11), 3908. https://doi.org/10.3390/s18113908