A Chair-Based Unconstrained/Nonintrusive Cuffless Blood Pressure Monitoring System Using a Two-Channel Ballistocardiogram
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Summary
2.2. Experimental Procedure
2.3. BCG Signal Processing Using Empirical Mode Decomposition
- (1)
- Identify the local maxima and local minima of the given time-series signals.
- (2)
- Use interpolation to estimate the upper and lower envelopes by connecting the local maxima and minima values, respectively.
- (3)
- Calculate the mean envelope by averaging the upper and lower envelopes determined in the above point.
- (4)
- Extract new time-series signals by subtracting the mean envelope determined in the above point from the original signals. These extracted signals are defined as IMF.
- (5)
- Set the time-series signals from which the extracted IMF is removed as new original signals and repeat steps (1) to (4). Define the new IMF until the newly designated original signals are expressed as a monotone function or have only one extreme value and no more new time-series signals can be extracted.
2.4. BCG Data Analysis and Feature Extraction
2.5. ANN
3. Results
3.1. IPD
3.2. BP Estimation Model
4. Discussion and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
PTT | Pulse Transit Time |
ECG | Electrocardiogram |
PPG | Photoplethysmogram |
BCG | Ballistocardiogram |
PVDF | Polyvinylidene fluoride resin |
ANN | Artificial Neural Network |
EMD | Empirical mode decomposition |
IMF | Intrinsic mode function |
IPD | Instantaneous phase difference |
ME | Mean error |
STD | Standard deviation |
ANSI | American National Standards Institute |
AAMI | Association for the Advancement of Medical Instrumentation |
ISO | International Organization for Standardization |
References
- World Health Organization. World Health Statistic 2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- World Health Organization. A Global Brief on Hypertension, Silent Killer, Global Public Health Crisis; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Peter, L.; Noury, N.; Cerny, M. A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising. IRBM 2014, 35, 271–282. [Google Scholar] [CrossRef]
- Ahmad, S.; Chen, S.; Soueidan, K.; Batkin, I.; Bolic, M.; Dajani, H.; Groza, V. Electrocardiogram-assisted blood pressure estimation. IEEE Trans. Biomed. Eng. 2012, 59, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Mukkamala, R.; Hahn, J.O.; Inan, O.T.; Mestha, L.K.; Kim, C.S.; Toreyin, H.; Kyal, S. Toward ubiquitous blood pressure monitoring via pulse transit time: Theory and practices. IEEE Trans. Biomed. Eng. 2015, 62, 1879–1901. [Google Scholar] [CrossRef] [PubMed]
- Poon, C.; Zhang, Y. Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time. In Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Shanghai, China, 17–18 January 2006; pp. 5877–5880. [Google Scholar]
- Kumar, N.; Agrawal, A.; Deb, S. Cuffless BP measurement using a correlation study of pulse transient time and heart rate. In Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI), New Delhi, India, 24–27 September 2014; pp. 1538–1541. [Google Scholar]
- Ding, X.; Yan, B.P.; Zhang, Y.; Liu, J.; Zhao, N.; Tsang, H.K. Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New Extension and A Comprehensive Evaluation. Sci. Rep. 2107, 7, 11554. [Google Scholar] [CrossRef] [PubMed]
- Kachuee, M.; Kinani, M.M.; Mohammadzade, H.; Shabany, M. Cuff-less Blood Pressure Estimation Algorithms for Contentious Health-care Monitoring. IEEE Trans. Biomed. Eng. 2017, 64, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Su, P.; Ding, X.; Zhang, Y.; Liu, J.; Miao, F.; Zhao, N. Long-term blood pressure prediction with deep recurrent neural networks. In Proceedings of the IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Las Vegas, NV, USA, 4–7 March 2018; pp. 323–328. [Google Scholar]
- Kranjec, J.; Beguš, S.; Drnovšek, J.; Geršak, G. Novel Methods for Noncontact Heart Rate Measurement: A Feasibility Study. IEEE Trans. Instrum. Meas. 2014, 63, 838–847. [Google Scholar] [CrossRef]
- Shu, Y.; Li, C.; Wang, Z.; Mi, W.; Li, Y.; Ren, T. A Pressure Sensing System for Heart Rate Monitoring with Polymer-Based Pressure Sensors and an Anti-Interference Post Processing Circuit. Sensors 2015, 15, 3224–3235. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Jiang, F.; Jiang, H.; Ye, S.; Chen, H. Low-power, noninvasive measurement system for wearable ballistocardiography in sitting and standing positions. Comput. Ind. 2017, 91, 24–32. [Google Scholar] [CrossRef]
- Kim, C.; Carek, A.M.; Mukkmala, R.; Inan, O.T.; Hahn, J. Ballistocardiogram as Proximal Timing Reference for Pulse Transit Time Measurement: Potential for Cuffless Blood Pressure Monitoring. IEEE Trans. Biomed. Eng. 2014, 62, 2657–2664. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Tamura, T.; Sekine, M.; Huang, M.; Chen, W.; Yoshida, M.; Sakatani, K.; Kobayashi, H.; Kanaya, S. A Chair-based Unobtrusive Cuffless Blood Pressure Monitoring System Based on Pulse Arrival Time. IEEE J. Biomed. Health Inform. 2017, 21, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Sadek, I. Ballistocardiogram Signal Processing: A Literature Review. arXiv, 2018; arXiv:1807.00951. [Google Scholar]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Sugita, N.; Obara, K.; Yoshizawa, M.; Abe, M.; Tanaka, A.; Homma, N. Techniques for estimating blood pressure variation using video images. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 2015, 4218–4221. [Google Scholar] [PubMed]
- Rapalis, A.; Janušauskas, A.; Marozas, V.; Lukoševičius, A. Estimation of blood pressure variability during orthostatic test using instantaneous photoplethysmogram frequency and pulse arrival time. Biomed. Signal Process. Control 2017, 32, 82–89. [Google Scholar] [CrossRef]
- Shin, H.S.; Lee, C.; Lee, M. Adaptive threshold method for the peak detection of photoplethysmographic waveform. Comput. Biol. Med. 2009, 39, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Association for the Advancement of the Medical Instrumentation. American National Standard for Electronic or Automated Sphygmomanometers; ANSI/AAMI SP 10 2201; AAMI: Arlington, VA, USA, 2002. [Google Scholar]
Systolic | Diastolic | |||
---|---|---|---|---|
ME | STD | ME | STD | |
PTT (PPG-BCG1) | 0.9805 | 7.6471 | −0.1467 | 5.5148 |
PTT (BCG1-BCG2) | −0.7616 | 7.5696 | 0.0341 | 4.0625 |
IPD | 0.0123 | 6.7452 | 0.0532 | 5.8317 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.J.; Roh, J.; Cho, D.; Hyeong, J.; Kim, S. A Chair-Based Unconstrained/Nonintrusive Cuffless Blood Pressure Monitoring System Using a Two-Channel Ballistocardiogram. Sensors 2019, 19, 595. https://doi.org/10.3390/s19030595
Lee KJ, Roh J, Cho D, Hyeong J, Kim S. A Chair-Based Unconstrained/Nonintrusive Cuffless Blood Pressure Monitoring System Using a Two-Channel Ballistocardiogram. Sensors. 2019; 19(3):595. https://doi.org/10.3390/s19030595
Chicago/Turabian StyleLee, Kwang Jin, Jongryun Roh, Dongrae Cho, Joonho Hyeong, and Sayup Kim. 2019. "A Chair-Based Unconstrained/Nonintrusive Cuffless Blood Pressure Monitoring System Using a Two-Channel Ballistocardiogram" Sensors 19, no. 3: 595. https://doi.org/10.3390/s19030595
APA StyleLee, K. J., Roh, J., Cho, D., Hyeong, J., & Kim, S. (2019). A Chair-Based Unconstrained/Nonintrusive Cuffless Blood Pressure Monitoring System Using a Two-Channel Ballistocardiogram. Sensors, 19(3), 595. https://doi.org/10.3390/s19030595