Computational Psychometrics Using Psychophysiological Measures for the Assessment of Acute Mental Stress
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Procedures
2.3. Experimental Stimuli
2.3.1. Recording of the Physiological Signals
2.3.2. Psychophysiological Signal Processing
2.3.3. Statistical Analyses
2.3.4. Computational Analyses
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- De Kloet, E.R.; Joels, M.; Holsboer, F. Stress and the brain: From adaptation to disease. Nat. Rev. Neurosci. 2005, 6, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.E.; Edmondson, D.; Kronish, I.M. State of the art review: Depression, stress, anxiety, and cardiovascular disease. Amer. J. Hypertens. 2015, 28, 1295–1302. [Google Scholar]
- Segerstrom, S.C.; Miller, G.E. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychol. Bull. 2004, 130, 601. [Google Scholar] [CrossRef] [PubMed]
- Giannopoulou, I. Neurobiological inscriptions of psychological trauma during early childhood. Psychiatrike = Psychiatriki 2012, 23, 27–38. [Google Scholar] [PubMed]
- Carr, C.P.; Martins, C.M.; Stingel, A.M.; Lemgruber, V.B.; Juruena, M.F. The role of early life stress in adult psychiatric disorders: A systematic review according to childhood trauma subtypes. J. Nerv. Ment. Dis. 2013, 201, 1007–1020. [Google Scholar] [CrossRef]
- Hjortskov, N.; Rissen, D.; Blangsted, A.K.; Fallentin, N.; Lundberg, U.; Sogaard, K. The effect of mental stress on heart rate variability and blood pressure during computer work. Eur. J. Appl. Physiol. 2004, 92, 84–89. [Google Scholar] [CrossRef]
- Cipresso, P.; Serino, S.; Villani, D.; Repetto, C.; Sellitti, L.; Albani, G.; Mauro, A.; Gaggioli, A.; Riva, G. Is your phone so smart to affect your state? An exploratory study based on psychophysiological measures. Neurocomputing 2012, 84, 23–30. [Google Scholar] [CrossRef]
- Pagani, M.; Mazzuero, G.; Ferrari, A.; Liberati, D.; Cerutti, S.; Vaitl, D.; Tavazzi, L.; Malliani, A. Sympathovagal interaction during mental stress. A study using spectral analysis of heart rate variability in healthy control subjects and patients with a prior myocardial infarction. Circulation 1991, 83, II43–51. [Google Scholar]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability-standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Piira, O.-P.; Miettinen, J.A.; Hautala, A.J.; Huikuri, H.V.; Tulppo, M.P. Physiological responses to emotional excitement in healthy subjects and patients with coronary artery disease. Auton. Neurosci. 2013, 177, 280–285. [Google Scholar] [CrossRef]
- Tank, A.W.; Wong, D.L. Peripheral and central effects of circulating catecholamines. Compr. Physiol. 2015, 5, 1–15. [Google Scholar] [PubMed]
- Landsberg, L.; Krieger, D.R. The sympathoadrenal system and homeostasis: Coping with changes. In Coping with Uncertainty: Behavioral and Developmental Perspectives; Palermo, D.S., Ed.; Psychology Press: London, UK, 2014; p. 39. [Google Scholar]
- Hering, D.; Kara, T.; Kucharska, W.; Somers, V.K.; Narkiewicz, K. High-normal blood pressure is associated with increased resting sympathetic activity but normal responses to stress tests. Blood Pressure 2013, 22, 183–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villani, D.; Grassi, A.; Cognetta, C.; Toniolo, D.; Cipresso, P.; Riva, G. Self-help stress management training through mobile phones: An experience with oncology nurses. Psychol. Serv. 2013, 10, 315. [Google Scholar] [CrossRef] [PubMed]
- Minkley, N.; Schröder, T.P.; Wolf, O.T.; Kirchner, W.H. The socially evaluated cold-pressor test (secpt) for groups: Effects of repeated administration of a combined physiological and psychological stressor. Psychoneuroendocrinology 2014, 45, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Hua, J. Psychophysiological adaptation to acute and chronic stress and the role of individual differences. Ph.D. Thesis, Paris 11 University, Paris, France, 12 May 2014. [Google Scholar]
- Villani, D.; Grassi, A.; Cognetta, C.; Cipresso, P.; Toniolo, D.; Riva, G. The effects of a mobile stress management protocol on nurses working with cancer patients: A preliminary controlled study. Stud. Health Tech. Inf. 2012, 173, 524. [Google Scholar]
- Jovanovic, T.; Sakoman, A.J.; Kozarić-Kovačić, D.; Meštrović, A.H.; Duncan, E.J.; Davis, M.; Norrholm, S.D. Acute stress disorder versus chronic posttraumatic stress disorder: Inhibition of fear as a function of time since trauma. Depress. Anxiety 2013, 30, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, R.; Melillo, P.; Bracale, U.; Caserta, M.; Triassi, M.; Pecchia, L. Acute mental stress assessment via short term hrv analysis in healthy adults: A systematic review with meta-analysis. Biomed. Signal Process. Control 2015, 18, 370–377. [Google Scholar] [CrossRef]
- Kofman, O.; Meiran, N.; Greenberg, E.; Balas, M.; Cohen, H. Enhanced performance on executive functions associated with examination stress: Evidence from task-switching and stroop paradigms. Cognit. Emot. 2006, 20, 577–595. [Google Scholar] [CrossRef]
- Vuksanovic, V.; Gal, V. Heart rate variability in mental stress aloud. Med. Eng. Phys. 2007, 29, 344–349. [Google Scholar] [CrossRef]
- Lackner, H.K.; Papousek, I.; Batzel, J.J.; Roessler, A.; Scharfetter, H.; Hinghofer-Szalkay, H. Phase synchronization of hemodynamic variables and respiration during mental challenge. Int. J. Psychophysiol. 2011, 79, 401–409. [Google Scholar] [CrossRef]
- Taelman, J.; Vandeput, S.; Vlemincx, E.; Spaepen, A.; Van Huffel, S. Instantaneous changes in heart rate regulation due to mental load in simulated office work. Eur. J. Appl. Physiol. 2011, 111, 1497–1505. [Google Scholar] [CrossRef] [PubMed]
- Medica-Torino, E.M. Effects of anxiety due to mental stress on heart rate variability in healthy subjects. Minerva Psichiatr. 2011, 52, 227–231. [Google Scholar]
- Visnovcova, Z.; Mestanik, M.; Javorka, M.; Mokra, D.; Gala, M.; Jurko, A.; Calkovska, A.; Tonhajzerova, I. Complexity and time asymmetry of heart rate variability are altered in acute mental stress. Physiol. Meas. 2014, 35, 1319–1334. [Google Scholar] [CrossRef] [PubMed]
- Teixeira-Silva, F.; Prado, G.B.; Ribeiro, L.C.; Leite, J.R. The anxiogenic video-recorded stroop color-word test: Psychological and physiological alterations and effects of diazepam. Physiol. Behav. 2004, 82, 215–230. [Google Scholar] [CrossRef]
- Willmann, M.; Langlet, C.; Hainaut, J.P.; Bolmont, B. The time course of autonomic parameters and muscle tension during recovery following a moderate cognitive stressor: Dependency on trait anxiety level. Int. J. Psychophysiol. 2012, 84, 51–58. [Google Scholar] [CrossRef]
- Schneider, G.M.; Jacobs, D.W.; Gevirtz, R.N.; O’Connor, D.T. Cardiovascular haemodynamic response to repeated mental stress in normotensive subjects at genetic risk of hypertension: Evidence of enhanced reactivity, blunted adaptation, and delayed recovery. J. Hum. Hypertens. 2003, 17, 829–840. [Google Scholar] [CrossRef]
- Smets, E.; Casale, P.; Großekathöfer, U.; Lamichhane, B.; De Raedt, W.; Bogaerts, K.; Van Diest, I.; Van Hoof, C. Comparison of machine learning techniques for psychophysiological stress detection. In Pervasive Computing Paradigms for Mental Health: 5th International Conference, Mindcare 2015, Milan, Italy, September 24–25, 2015; Serino, S., Matic, A., Giakoumis, D., Lopez, G., Cipresso, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 604, pp. 13–22. [Google Scholar]
- Maglogiannis, I.G. Emerging Artificial Intelligence Applications in Computer Engineering: Real Word ai Systems with Applications in Ehealth, Hci, Information Retrieval and Pervasive Technologies; IOS Press: Netherlands, 2007; Volume 160. [Google Scholar]
- Giakoumis, D.; Drosou, A.; Cipresso, P.; Tzovaras, D.; Hassapis, G.; Gaggioli, A.; Riva, G. Using activity-related behavioural features towards more effective automatic stress detection. PLoS ONE 2012, 7, e43571. [Google Scholar] [CrossRef]
- Tartarisco, G.; Carbonaro, N.; Tonacci, A.; Bernava, G.; Arnao, A.; Crifaci, G.; Cipresso, P.; Riva, G.; Gaggioli, A.; De Rossi, D. Neuro-fuzzy physiological computing to assess stress levels in virtual reality therapy. Interact. Comput. 2015, 27, 521–533. [Google Scholar] [CrossRef]
- Gaggioli, A.; Pallavicini, F.; Morganti, L.; Serino, S.; Scaratti, C.; Briguglio, M.; Crifaci, G.; Vetrano, N.; Giulintano, A.; Bernava, G. Experiential virtual scenarios with real-time monitoring (interreality) for the management of psychological stress: A block randomized controlled trial. J. Med. Internet Res. 2014, 16, e167. [Google Scholar] [CrossRef]
- Gaggioli, A.; Pioggia, G.; Tartarisco, G.; Baldus, G.; Corda, D.; Cipresso, P.; Riva, G. A mobile data collection platform for mental health research. Pers. Ubiquitous Comput. 2013, 17, 241–251. [Google Scholar] [CrossRef]
- Serino, S.; Cipresso, P.; Gaggioli, A.; Riva, G. The potential of pervasive sensors and computing for positive technology: The interreality paradigm. In Pervasive and Mobile Sensing and Computing for Healthcare: Technological and Social Issues; Mukhopadhyay, C.S., Postolache, A.O., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 207–232. [Google Scholar]
- Carbonaro, N.; Tognetti, A.; Anania, G.; De Rossi, D.; Cipresso, P.; Gaggioli, A.; Riva, G. A mobile biosensor to detect cardiorespiratory activity for stress tracking. In Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare; ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering): Venice, Italy, 2013; pp. 440–445. [Google Scholar]
- Lin, Y. A natural contact sensor paradigm for nonintrusive and real-time sensing of biosignals in human-machine interactions. IEEE Sens. J. 2011, 11, 522–529. [Google Scholar] [CrossRef]
- Frank, A.M.; Thieberger, G.; Ben-Haim, A.T. Situation-dependent libraries of affective response. U.S. Patent No. 9,230,220, 5 January 2016. [Google Scholar]
- McCarthy, C.; Pradhan, N.; Redpath, C.; Adler, A. Validation of the empatica e4 wristband. In Proceedings of the 2016 IEEE EMBS International Student Conference (ISC), Ottawa, ON, Canada, 29–31 May 2016; pp. 1–4. [Google Scholar]
- Mauri, M.; Magagnin, V.; Cipresso, P.; Mainardi, L.; Brown, E.N.; Cerutti, S.; Villamira, M.; Barbieri, R. Psychophysiological signals associated with affective states. IEEE Eng. Med. Biol. 2010, 3563–3566. [Google Scholar]
- Magagnin, V.; Mauri, M.; Cipresso, P.; Mainardi, L.; Brown, E.; Cerutti, S.; Villamira, M.; Barbieri, R. Heart rate variability and respiratory sinus arrhythmia assessment of affective states by bivariate autoregressive spectral analysis. Comput. Cardiol. 2010, 37, 145–148. [Google Scholar]
- Love, J.; Selker, R.; Marsman, M.; Jamil, T.; Dropmann, D.; Verhagen, A.; Wagenmakers, E. Jasp (version 0.7.1.4) [computer software]. Amsterdam, The Netherlands: JASP Project. 2015. Available online: https://jasp-stats.org (assesed on 8 February 2019).
- Kuehl, R.O. Design of Experiments: Statistical Principles of Research Design and Analysis, 2nd ed.; Duxbury/Thomson Learninyg: Pacific Grove, CA, USA, 2000; p. xvi. 666p. [Google Scholar]
- Oehlert, G.W. A First Course in Design and Analysis of Experiments; W.H. Freeman: New York, NY, USA, 2000; p. xvii. 659p. [Google Scholar]
- Caruana, R.; Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd International Conference on Machine Learning, New York, NY, USA, 25–29 June 2006; pp. 161–168. [Google Scholar]
- Suthaharan, S. Machine learning models and algorithms for big data classification. Integr. Ser. Inf. Syst. 2016, 36, 1–12. [Google Scholar]
- Kotsiantis, S.B. Supervised machine learning: A review of classification techniques. Informatica 2007, 31, 249–268. [Google Scholar]
- Wang, S.; Li, D.; Petrick, N.; Sahiner, B.; Linguraru, M.G.; Summers, R.M. Optimizing area under the roc curve using semi-supervised learning. Pattern Recognit. 2015, 48, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; Goadrich, M. The relationship between precision-recall and roc curves. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA; 2006; pp. 233–240. [Google Scholar]
- Raudenbush, S.W.; Bryk, A.S. Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd ed.; Sage Publications: Thousand Oaks, CA, USA, 2002. [Google Scholar]
- Swick, D.; Jovanovic, J. Anterior cingulate cortex and the stroop task: Neuropsychological evidence for topographic specificity. Neuropsychologia 2002, 40, 1240–1253. [Google Scholar] [CrossRef]
- Carter, C.S.; Braver, T.S.; Barch, D.M.; Botvinick, M.M.; Noll, D.; Cohen, J.D. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 1998, 280, 747–749. [Google Scholar] [CrossRef]
- MacDonald, A.W.; Cohen, J.D.; Stenger, V.A.; Carter, C.S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 2000, 288, 1835–1838. [Google Scholar] [CrossRef]
- Cipresso, P.; Matic, A.; Giakoumis, D.; Ostrovsky, Y. Advances in computational psychometrics. Comput. Math. Methods Med. 2015. [Google Scholar] [CrossRef]
- Cipresso, P. Modeling behavior dynamics using computational psychometrics within virtual worlds. Front. Psychol. 2015, 6, 1725. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.B. Stress and the Art of Biofeedback; Harper & Row: Oxford, England, 1977. [Google Scholar]
- Whited, A.; Larkin, K.T.; Whited, M. Effectiveness of emwave biofeedback in improving heart rate variability reactivity to and recovery from stress. Appl. Psychophysiol. Biofeedback 2014, 39, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Shusterman, V.; Barnea, O. Sympathetic nervous system activity in stress and biofeedback relaxation. IEEE Eng. Med. Biol. Mag. 2005, 24, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Villani, D.; Cipresso, P.; Gaggioli, A.; Riva, G. Positive technology for helping people cope with stress. Integrating Technol. Posit. Psychol. Pract. 2016, 316. [Google Scholar]
- Gaggioli, A.; Cipresso, P.; Serino, S.; Campanaro, D.; Pallavicini, F.; Wiederhold, B.; Riva, G. Positive technology: A free mobile platform for the self-management of psychological stress. Stud. Health Technol. Inf. 2014, 199, 25. [Google Scholar]
Measure | Condition | N | Mean | Std. Dev. | Std. Error |
---|---|---|---|---|---|
Respiration Amplitude | Relax | 58 | 1.041 | 0.633 | 0.083 |
Stroop | 58 | 1.863 | 0.988 | 0.130 | |
Arithmetic | 58 | 2.622 | 1.477 | 0.194 | |
Respiration Period | Relax | 58 | 3867.726 | 486.562 | 63.889 |
Stroop | 58 | 4695.291 | 479.727 | 62.991 | |
Arithmetic | 58 | 5248.448 | 661.329 | 86.837 | |
Respiration Rate (BPM) | Relax | 58 | 16.266 | 1.785 | 0.234 |
Stroop | 58 | 13.984 | 1.283 | 0.168 | |
Arithmetic | 58 | 12.852 | 1.254 | 0.165 | |
BVP Amplitude | Relax | 58 | 9.814 | 5.488 | 0.721 |
Stroop | 58 | 3.824 | 2.674 | 0.351 | |
Arithmetic | 58 | 3.669 | 2.364 | 0.310 | |
RR mean | Relax | 58 | 772.724 | 111.797 | 14.680 |
Stroop | 58 | 704.346 | 95.495 | 12.539 | |
Arithmetic | 58 | 705.889 | 97.820 | 12.844 | |
HR | Relax | 58 | 79.688 | 11.251 | 1.477 |
Stroop | 58 | 90.207 | 11.826 | 1.553 | |
Arithmetic | 58 | 90.673 | 12.395 | 1.628 | |
RR peak frequency | Relax | 58 | 0.128 | 0.070 | 0.009 |
Stroop | 58 | 0.068 | 0.047 | 0.006 | |
Arithmetic | 58 | 0.092 | 0.042 | 0.006 | |
HR Max–HR min | Relax | 58 | 10.093 | 7.491 | 0.984 |
Stroop | 58 | 30.623 | 20.319 | 2.668 | |
Arithmetic | 58 | 39.514 | 23.542 | 3.091 | |
SDHR | Relax | 58 | 6.843 | 3.872 | 0.508 |
Stroop | 58 | 14.090 | 7.846 | 1.030 | |
Arithmetic | 58 | 17.385 | 7.880 | 1.035 | |
VLF | Relax | 58 | 73.494 | 70.748 | 9.290 |
Stroop | 58 | 438.394 | 352.913 | 46.340 | |
Arithmetic | 58 | 470.880 | 512.707 | 67.322 | |
LF | Relax | 58 | 226.405 | 263.204 | 34.560 |
Stroop | 58 | 854.887 | 997.451 | 130.972 | |
Arithmetic | 58 | 1273.526 | 1177.104 | 154.561 | |
HF | Relax | 58 | 263.750 | 575.001 | 75.501 |
Stroop | 58 | 908.667 | 1986.858 | 260.887 | |
Arithmetic | 58 | 1309.563 | 1915.539 | 251.523 | |
LF/HF | Relax | 58 | 1.804 | 1.337 | 0.176 |
Stroop | 58 | 1.990 | 1.658 | 0.218 | |
Arithmetic | 58 | 1.426 | 1.036 | 0.136 | |
Skin Conductance (SC) | Relax | 58 | 11.603 | 10.600 | 1.392 |
Stroop | 58 | 19.643 | 12.781 | 1.678 | |
Arithmetic | 58 | 20.893 | 12.675 | 1.664 |
Measure | df | F | Sig. | Partial η2 |
---|---|---|---|---|
Respiration Amplitude | 1.418 | 85.732 | <0.001 | 0.601 |
Respiration Period | 1.744 | 102.223 | <0.001 | 0.642 |
Respiration Rate (BPM) | 1.635 | 86.097 | <0.001 | 0.602 |
BVP Amplitude | 1.080 | 106.903 | <0.001 | 0.652 |
RR mean | 1.353 | 33.355 | <0.001 | 0.369 |
HR | 1.397 | 55.366 | <0.001 | 0.493 |
RR peak frequency | 1.451 | 19.185 | <0.001 | 0.252 |
HR Max-HR min | 1.558 | 73.009 | <0.001 | 0.562 |
SDHR | 1.354 | 90.846 | <0.001 | 0.614 |
VLF | 1.705 | 27.298 | <0.001 | 0.324 |
LF | 1.784 | 32.689 | <0.001 | 0.364 |
HF | 1.345 | 12.125 | <0.001 | 0.175 |
LF/HF | 1.774 | 5.753 | 0.006 | 0.092 |
Skin Conductance (SC) | 1.112 | 119.135 | <0.001 | 0.676 |
Measure | Relax vs. Stroop | Relax vs. Arithmetic | Arithmetic vs. Stroop |
---|---|---|---|
Respiration Amplitude | 0.822 * (0.095) | 1.581 * (0.155) | −0.760 * (0.104) |
Respiration Period | 827.565 * (86.499) | 1380.723 * (114.278) | −553.157 * (88.322) |
Respiration Rate (BPM) | −2.283 * (0.279) | −3.414 * (0.307) | 1.132 * (0.196) |
BVP Amplitude | −5.990 * (0.559) | −6.145 * (0.597) | 0.155 (0.139) |
RR mean | −68.378 * (11.398) | −66.835 * (10.747) | −1.543 (5.364) |
HR | 10.519 * (1.365) | 10.985 * (1.356) | −0.466 (0.691) |
RR peak frequency | −0.059 * (0.011) | −0.035 * (0.011) | −0.024 * (0.006) |
HR Max–HR min | 20.530 * (2.559) | 29.421 * (2.991) | −8.891 * (1.794) |
SDHR | 7.247 * (0.880) | 10.542 * (0.969) | −3.295 * (0.456) |
VLF | 364.900 * (45.725) | 397.386 * (66.608) | −32.487 (64.606) |
LF | 628.482 * (125.608) | 1047.121 * (150.396) | −418.639 * (112.210) |
HF | 644.916 * (251.945) | 1045.813 * (245.665) | −400.896 * (118.022) |
LF/HF | 0.185 (0.191) | −0.379 (0.175) | 0.564 * (0.138) |
Skin Conductance (SC) | 8.041 * (0.816) | 9.291 * (0.751) | −1.250 * (0.223) |
Method | AUC | CA | F1 | Precision | Recall |
---|---|---|---|---|---|
Logistic Regression | 0.808 | 0.744 | 0.746 | 0.749 | 0.744 |
Random Forest | 0.771 | 0.694 | 0.692 | 0.694 | 0.694 |
Support Vector Machine (SVM) | 0.800 | 0.733 | 0.731 | 0.732 | 0.733 |
Naive Bayes | 0.796 | 0.728 | 0.723 | 0.733 | 0.728 |
Parameter | B | Std. Error | Hypothesis Test | ||
---|---|---|---|---|---|
Wald Chi-Square | df | Sig. | |||
(Intercept) | −59.397 | 6.6904 | 78.818 | 1 | <0.001 |
SDRR | 0.204 | 0.0210 | 94.114 | 1 | <0.001 |
Respiration Period | 0.003 | 0.0009 | 10.752 | 1 | 0.001 |
HR | 0.479 | 0.0764 | 39.247 | 1 | <0.001 |
RR peak frequency | 57.614 | 12.3360 | 21.812 | 1 | <0.001 |
VLF | 0.011 | 0.0031 | 11.446 | 1 | 0.001 |
(Scale) | 68.237 | ||||
Dependent Variable: HR Max–HR min (RSA) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cipresso, P.; Colombo, D.; Riva, G. Computational Psychometrics Using Psychophysiological Measures for the Assessment of Acute Mental Stress. Sensors 2019, 19, 781. https://doi.org/10.3390/s19040781
Cipresso P, Colombo D, Riva G. Computational Psychometrics Using Psychophysiological Measures for the Assessment of Acute Mental Stress. Sensors. 2019; 19(4):781. https://doi.org/10.3390/s19040781
Chicago/Turabian StyleCipresso, Pietro, Desirée Colombo, and Giuseppe Riva. 2019. "Computational Psychometrics Using Psychophysiological Measures for the Assessment of Acute Mental Stress" Sensors 19, no. 4: 781. https://doi.org/10.3390/s19040781