A Novel Hierarchical Coding Progressive Transmission Method for WMSN Wildlife Images
Abstract
:1. Introduction
2. Wildlife Monitoring System
3. Hierarchical Coding Progressive Transmission Method
- (1)
- Saliency region extraction based on convolution neural networks (CNN) [25], which are utilized to generate the mask image.
- (2)
- The maximum displacement method is applied to ensure the saliency region, in another words, the wildlife region is placed in the highest priority of compression transmission based on SPIHT coding.
- (3)
- To guarantee the transmission efficiency, the EZW coding algorithm is utilized to transmit the background region when the image information of the saliency region is received.
3.1. Mask Image Generation
3.2. Progressive Transmission Strategy
3.3. Saliency Object Region Transmission
- (1)
- If the coordinate in is greater than the current threshold T, it will be stored in the LSP list.
- (2)
- All elements in are compared with the threshold T. The symbol is used to represent the coefficient set if there is no important element. Otherwise, the is divided into the set and set.
- (3)
- If there are important elements in , they will be stored in the LSP.
- (4)
- The symbol is used to represent the coefficient set when there is no important element. Otherwise, the is splitted into four parts.
- (5)
- Step (5) is performed periodically for each newly generated spatial direction tree until all the important elements are stored in the LSP.
3.4. Background Transmission
4. Comparison and Discussion
4.1. Evaluation Criteria
4.2. Experiment Result and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hori, B.; Petrell, R.J.; Fernlund, G.; Trites, A. Mechanical reliability of devices subdermally implanted into the young of long-lived and endangered wildlife. J. Mater. Eng. Perform. 2012, 21, 1924–1931. [Google Scholar] [CrossRef]
- Gor, M.; Vora, J.; Tanwar, S.; Tyagi, S.; Kumar, N.; Obaidat, M.S.; Sadoun, B. GATA: GPS-Arduino based Tracking and Alarm system for protection of wildlife animals. In Proceedings of the 6th International Conference on Computer, Information and Telecommunication Systems, Dalian, China, 21–23 July 2017; pp. 166–170. [Google Scholar]
- Pérez, J.M.L.; de la Varga, M.E.A.; García, J.J.; Lacasa, V.R.G. Monitoring lidia cattle with GPS-GPRS technology: A study on grazing behaviour and spatial distribution. Vet. Mex. 2017, 4, 1–17. [Google Scholar]
- Fernández-Caballero, A.; López, M.; Serrano-Cuerda, J. Thermal-infrared pedestrian ROI extraction through thermal and motion information fusion. Sensors 2014, 14, 6666–6676. [Google Scholar] [CrossRef] [PubMed]
- Handcock, R.N.; Swain, D.L.; Bishop-Hurley, G.J.; Patison, K.P.; Wark, T.; Valencia, P.; Corke, P.; O’Neill, C.J. Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing. Sensors 2009, 9, 3586–3603. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fapojuwo, A.O.; Davies, R.J. A wireless sensor network for feedlot animal health monitoring. IEEE Sens. J. 2016, 16, 6433–6446. [Google Scholar] [CrossRef]
- Li, X.H. Energy efficient wireless sensor networks with transmission diversity. Electron. Lett. 2003, 39, 1753–1755. [Google Scholar] [CrossRef]
- Poornachandra, S.; Ravichandran, V.; Kumaravel, N. Mapping of discrete cosine transform (DCT) and discrete sine transform (DST) based on symmetries. IETE J. Res. 2003, 49, 35–42. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, A.; Singh, G.K. Electrocardiogram signal compression based on singular value decomposition (SVD) and adaptive scanning wavelet difference reduction (ASWDR) technique. AEU Int. J. Electron. Commun. 2015, 69, 1810–1822. [Google Scholar] [CrossRef]
- Kong, W.B.; Zhou, H.X.; Zheng, K.L.; Mu, X.; Hong, W. FFT-based method with near-matrix compression. IEEE Trans. Antennas Propag. 2017, 65, 5975–5983. [Google Scholar] [CrossRef]
- Cheepurupalli, V.; Tubbs, S.; Boykin, K.; Naheed, N. Comparison of SVD and FFT in image compression. In Proceedings of the International Conference on Computational Science and Computational Intelligence, CSCI 2015, Las Vegas, NV, USA, 7–9 December 2015; pp. 526–530. [Google Scholar]
- Hung, K.L.; Chang, C.C.; Lin, I.C. Lossless compression-based progressive image transmission scheme. Imaging Sci. J. 2004, 52, 212–224. [Google Scholar] [CrossRef]
- Du, Y.G.; Li, Z.Y.; Stojmenovic, M.; Qu, W.Y.; Qi, H. A Low Overhead Progressive Transmission for Visual Descriptor Based on Image Saliency. J. Mult. Valued Logic Soft Comput. 2015, 25, 125–145. [Google Scholar]
- Baeza, I.; Verdoy, J.A.; Villanueva, R.J.; Villanueva-Oller, J. SVD lossy adaptive encoding of 3D digital images for ROI progressive transmission. Image Vision Comput. 2010, 28, 449–457. [Google Scholar] [CrossRef]
- Rubino, E.M.; Centelles, D.; Sales, J.J.; Marti, V.; Marin, R.; Sanz, P.J.; Alvares, A.J. Underwater radio frequency image sensor using progressive image compression and region ofinterest. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 4115–4134. [Google Scholar] [CrossRef]
- Osamu, W.; Hitoshi, K. An extension of ROI-based scalability for progressive transmission in JPEG2000 coding. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2003, E86A, 765–771. [Google Scholar]
- Baeza, I.; Verdoy, J.A.; Villanueva-Oller, J.; Villanueva, R.J. ROI-based procedures for progressive transmission of digital images: A comparison. Math. Comput. Model. 2009, 50, 849–859. [Google Scholar] [CrossRef]
- Moghaddam, B.; Biermann, H.; Margaritis, D. Defining image content with multiple regions-of interest. In Proceedings of the IEEE Workshop on Content-Based Access of Image and Video Libraries, Fort Collins, CO, USA, 20–22 June 1999; pp. 89–93. [Google Scholar]
- Elazary, L.; Itti, L. A Bayesian model for efficient visual search and recognition. Vis. Res. 2010, 50, 1338–1352. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Dai, L.; Cai, Y.F.; Chen, L.; Zhang, Y. Saliency detection by multilevel deep pyramid model. J. Sens. 2018, 2018. [Google Scholar] [CrossRef]
- Xiang, T.; Qu, J.Y.; Xiao, D. Joint SPIHT compression and selective encryption. Appl. Soft Comput. 2014, 21, 159–170. [Google Scholar] [CrossRef]
- Jang-Won, K. Improvement of Image Compression Using EZW Based in HWT. J. Korea Inst. Inf. Commun. Eng. 2011, 15, 2641–2646. [Google Scholar] [Green Version]
- Murray, N.; Vanrell, M.; Otazu, X.; Parraga, C.A. Saliency estimation using a non-parametric low-level vision model. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 433–440. [Google Scholar]
- Lin, Q.; Xu, X.G.; Zhan, Y.Z.; Liao, D.A. Extracting regions of interest based on visual attention model. In Proceedings of the 2011 International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011; pp. 313–316. [Google Scholar]
- Xie, S.; Tu, Z. Holistically-Nested Edge Detection. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1395–1403. [Google Scholar]
- Andrew, G.H.; Zhu, M.L.; Chen, B.; Dmitry, K.; Wang, W.J.; Tobias, W.; Marco, A.; Hartwig, A. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv, 2017; arXiv:1704.04861. [Google Scholar]
- Wu, Y.X.; He, K.M. Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Hou, Q.B.; Cheng, M.M.; Hu, X.W.; Borji, A.; Tu, Z.W.; Torr, P. Deeply supervised salient object detection with short connections. IEEE Trans. Pattern Anal. Mach. Intell. 2018. [Google Scholar] [CrossRef] [PubMed]
- Rawat, C.; Meher, S. A hybrid image compression scheme using DCT and fractal image compression. Int. Arab J. Inf. Technol. 2013, 10, 553–562. [Google Scholar]
- Lee, C.; Youn, S.; Jeong, T.; Lee, E.; Sagrista, J.S. Hybrid compression of hyperspectral images based on PCA with pre-encoding discriminant information. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1491–1495. [Google Scholar]
- Feng, W.Z.; Zhang, J.G.; Hu, C.H.; Wang, Y.; Xiang, Q.M.; Yan, H. A novel saliency detection method for wild animal monitoring images with WMSN. J. Sens. 2018, 2018. [Google Scholar] [CrossRef]
- Hernández-Cabronero, M.; Blanes, I.; Pinho, A.J.; Marcellin, M.W.; Serra-Sagrista, J. Progressive lossy-to-lossless compression of DNA microarray images. IEEE Signal Process. Lett. 2016, 23, 698–702. [Google Scholar] [CrossRef]
Monitoring Node | Function Parameters |
---|---|
Camera | OV7725 QVGA 30fps |
Physical pixel | 640 × 480 |
Support memory card | SD 16G |
Controller | STM32 control ship (72 MHz CPU, 512 K SRAM) |
Measuring range | 310 m |
Rate | 200 kbps |
Trigger mode | Infrared trigger |
Sample Number | PSNR | SSIM | ||
---|---|---|---|---|
Saliency Region | Full Image | Saliency Region | Full Image | |
1 | 45.4356 | 41.4773 | 0.9772 | 0.8941 |
2 | 47.1674 | 39.2856 | 0.9894 | 0.9075 |
3 | 45.3462 | 37.5179 | 0.9779 | 0.8894 |
4 | 46.6589 | 41.1897 | 0.9897 | 0.9186 |
5 | 44.3027 | 36.9071 | 0.997 | 0.8872 |
6 | 44.5452 | 35.9571 | 0.9771 | 0.8734 |
7 | 45.4253 | 38.069 | 0.9967 | 0.8964 |
8 | 46.5923 | 39.6207 | 0.9977 | 0.9038 |
9 | 48.3964 | 42.2547 | 0.9856 | 0.9256 |
10 | 47.7263 | 38.0854 | 0.9881 | 0.9181 |
Method | Our Algorithm | Our Algorithm (Lossless Coding) | EZW | DCT |
---|---|---|---|---|
Average time(s) | 4.132 | 17.631 | 3.974 | 9.379 |
Code type | Matlab | Matlab | Matlab | Matlab |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, W.; Hu, C.; Wang, Y.; Zhang, J.; Yan, H. A Novel Hierarchical Coding Progressive Transmission Method for WMSN Wildlife Images. Sensors 2019, 19, 946. https://doi.org/10.3390/s19040946
Feng W, Hu C, Wang Y, Zhang J, Yan H. A Novel Hierarchical Coding Progressive Transmission Method for WMSN Wildlife Images. Sensors. 2019; 19(4):946. https://doi.org/10.3390/s19040946
Chicago/Turabian StyleFeng, Wenzhao, Chunhe Hu, Yuan Wang, Junguo Zhang, and Hao Yan. 2019. "A Novel Hierarchical Coding Progressive Transmission Method for WMSN Wildlife Images" Sensors 19, no. 4: 946. https://doi.org/10.3390/s19040946