Adaptive Target Birth Intensity Multi-Bernoulli Filter with Noise-Based Threshold
Abstract
:1. Introduction
2. Cardinality Balanced Multi-Target Multi-Bernoulli Filter
- The evolution of each target and the generation of each observation are all independent;
- The clutter is independent of the observations of targets and follows a Poisson distribution;
- One target can generate at most one observation at each scan;
- Target birth is multi-Bernoulli and is independent of target survival.
3. Extension of the Cardinality Balanced Multi-Target Multi-Bernoulli Filter
3.1. CBMeMBer Filter Using Adaptive Target Birth Intensity
3.2. Implementation
4. Fast Sequential Monte Carlo Cardinality Balanced Multi-Target Multi-Bernoulli Filter with Adaptive Target Birth Intensity
4.1. Improved Measurement Likelihood
4.2. Threshold Selection
4.3. Fast Sequential Monte Carlo Adaptive Target Birth Intensity Cardinality Balanced Multi-Target Multi-Bernoulli Filter
5. Simulations
5.1. Availability of the Threshold Method
5.2. Fast SMC Adaptive Target Birth Intensity CBMeMBer Filter
5.3. Fast SMC Adaptive Target Birth Intensity CBMeMBer Filter under Specific Conditions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mahler, R. Statistical Multisource-Multi-Target Information Fusion; Artech House: Norwood, MA, USA, 2007. [Google Scholar]
- Mahler, R. Multi-target Bayes filtering via first-order multi-target moments. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1152–1178. [Google Scholar] [CrossRef]
- Vo, B.N.; Ma, W.K. The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process. 2006, 54, 4091–4104. [Google Scholar] [CrossRef]
- Mahler, R. PHD filters of higher order in target number. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1523–1543. [Google Scholar] [CrossRef]
- Vo, B.T.; Vo, B.N.; Cantoni, A. Analytic implementations of the cardinalized probability hypothesis density filter. IEEE Trans. Signal Process. 2007, 55, 3553–3567. [Google Scholar] [CrossRef]
- Vo, B.T.; Vo, B.N.; Cantoni, A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans. Signal Process. 2009, 57, 409–423. [Google Scholar]
- Vo, B.N.; Vo, B.T.; Pham, N.T.; Suter, D. Joint detection and estimation of multiple objects from image observations. IEEE Trans. Signal Process. 2010, 58, 5129–5241. [Google Scholar] [CrossRef]
- Vo, B.T.; Vo, B.N. Labeled Random Finite Sets and multi-object conjugate priors. IEEE Trans. Signal Process. 2013, 61, 3460–3475. [Google Scholar] [CrossRef]
- Reuter, S.; Vo, B.T.; Vo, B.N.; Dietmayer, K. The labelled multi-Bernoulli filter. IEEE Trans. Signal Process. 2014, 62, 3246–3260. [Google Scholar]
- Vo, B.N.; Vo, B.T.; Hoang, H.G. An efficient implementation of the generalized labeled multi-Bernoulli filter. IEEE Trans. Signal Process. 2017, 65, 1975–1987. [Google Scholar] [CrossRef]
- Ristic, B.; Clark, D.; Vo, B.N.; Vo, B.T. Adaptive target birth intensity for PHD and CPHD filters. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1656–1668. [Google Scholar] [CrossRef]
- Lin, S.; Vo, B.T.; Nordholm, S.E. Measurement driven birth model for the generalized labeled multi-Bernoulli filter. In Proceedings of the 5th International Conference on Control, Automation and Information Sciences, Ansan, South Korea, 27–29 October 2016; pp. 94–99. [Google Scholar]
- Reuter, S.; Meissner, D.; Wilking, B.; Dietmayer, K. Cardinality balanced multi-target multi-Bernoulli filtering using adaptive birth distributions. In Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 9–12 July 2013; pp. 1608–1615. [Google Scholar]
- Choi, M.E.; Seo, S.W. Robust multi-target tracking scheme based on Gaussian mixture probability hypothesis density filter. IEEE Trans. Vehicl. Technol. 2016, 65, 4217–4229. [Google Scholar] [CrossRef]
- Choi, B.; Park, S.; Kim, E. A newborn track detection and state estimation algorithm using Bernoulli random finite sets. IEEE Trans. Signal Process. 2016, 64, 2660–2674. [Google Scholar] [CrossRef]
- Dong, P.; Jing, Z.; Gong, D.; Tang, B. Maneuvering multi-target tracking based on variable structure multiple model GMCPHD filter. Signal Process. 2017, 141, 158–167. [Google Scholar] [CrossRef]
- Liu, H.; Wu, W. Interacting multiple model (IMM) fifth-degree spherical simplex-radial cubature Kalman filter for maneuvering target tracking. Sensors 2017, 17, 1374. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.L. An efficient, variational approximation of the best fitting multi-Bernoulli filter. IEEE Trans. Signal Process. 2015, 63, 258–273. [Google Scholar] [CrossRef]
- Williams, J.L. Hybrid Poisson and multi-Bernoulli filters. In Proceedings of the 15th International Conference on Information Fusion, Singapore, 9–12 July 2012; pp. 1103–1110. [Google Scholar]
- Jiang, H.; Cai, Y. Adaptive fifth-degree cubature information filter for multi-sensor bearings-only tracking. Sensors 2018, 18, 3241. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Xu, A.; Sui, X.; Wang, Y. A modified extended Kalman filter for a two-antenna GPS/INS vehicular navigation system. Sensors 2018, 18, 3809. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Das, M.; Sadhu, S.; Ghoshal, T.K. Adaptive divided difference filter for parameter and state estimation of non-linear systems. IET Signal Process. 2015, 9, 369–376. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, S.; Wu, H.; He, R.; Hao, L. A Student’s t mixture probability hypothesis density filter for multi-target tracking with outliers. Sensors 2018, 18, 1095. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yi, W.; Hoseinnezhad, R.; Wang, B.; Kong, L. Multiobject tracking for generic observation model using labeled random finite sets. IEEE Trans. Signal Process. 2018, 66, 368–383. [Google Scholar] [CrossRef]
- Imani, M.; Braga-Neto, U.M. Maximum-likelihood adaptive filter for partially observed boolean dynamical systems. IEEE Trans. Signal Process. 2017, 65, 359–371. [Google Scholar] [CrossRef]
- He, S.; Shin, H.S.; Tsourdos, A. Joint probabilistic data association filter with unknown detection probability and clutter rate. Sensors 2018, 18, 269. [Google Scholar]
- Papa, G.; Braca, P.; Horn, S.; Marano, S.; Matta, V.; Willett, P. Multisensor adaptive Bayesian tracking under time-varying target detection probability. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2193–2209. [Google Scholar] [CrossRef]
- Vo, B.T.; Vo, B.N.; Cantoni, A. Bayesian filtering with random finite set observations. IEEE Trans. Signal Process. 2008, 56, 1313–1326. [Google Scholar] [CrossRef]
- Blackman, S.S.; Popoli, R. Design and Analysis of Modern Tracking Systems; Artech House: Norwood, MA, USA, 1999. [Google Scholar]
- Zhang, H.; Jing, Z.; Hu, S. Gaussian mixture CPHD filter with gating technique. Signal Process. 2009, 89, 1521–1530. [Google Scholar] [CrossRef]
- Yoon, J.H.; Kim, D.Y.; Yoon, K.J. Efficient importance sampling function design for sequential Monte Carlo PHD filter. Signal Process. 2012, 92, 2315–2321. [Google Scholar] [CrossRef]
- Kim, D.Y.; Liang, M.; Jeon, M. Multi-Bernoulli filter based sensor selection with limited sensing range for multi-target tracking. In Proceedings of the 4th International Conference on Control, Automation and Information Sciences, Changshu, China, 29–31 October 2016; pp. 74–79. [Google Scholar]
- Gunes, A.; Guldogan, M.B. Multi-target bearing tracking with a single acoustic vector sensor based on multi-Bernoulli filter. In Proceedings of the 2015 Oceans, Genoa, Italy, 18–21 May 2015; pp. 1–5. [Google Scholar]
- Hoak, A.; Medeiros, H.; Povinelli, R.J. Image-based multi-target tracking through multi-Bernoulli filtering with interactive likelihoods. Sensors 2017, 17, 501. [Google Scholar] [CrossRef] [PubMed]
- Schuhmacher, D.; Vo, B.T.; Vo, B.N. A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Signal Process. 2008, 56, 3447–3457. [Google Scholar] [CrossRef]
- Blair, W.D.; Watson, G.A. Benchmark Problem for Radar Resource Allocation and Tracking Maneuvering Targets in the Presence of ECM; Technical Report, Document, No. NSWCDD/TR-96/10; Naval Surface Warfare Center Dahlgren Division: Dahlgren, VA, USA, 1996. [Google Scholar]
• Input: , , , . |
• Output: . |
Step 1: according to [13] |
; |
Step 2: according to , Equations (6) and (7); |
Step 3: according to , with Equation (20); |
according to , , with Equation (21) |
, i.e., Equation (19); |
Step 4: , i.e., Equation (25). |
Fast filters | |||||
Improvement |
Target Birth Models | Birth Position | Birth Probability |
---|---|---|
known birth intensity | true | True |
fixed birth intensity | six possible appearing areas | constant, |
adaptive birth density | previous measurement areas | constant, |
adaptive birth intensity | previous measurement areas | adaptively modified |
Filtering Methods | Fixed Birth | Known Birth | Adaptive Birth Density | Adaptive Birth | Adaptive Birth and Threshold |
---|---|---|---|---|---|
Opreation time | 73.8975 s | 59.7363 s | 208.6728 s | 251.4441 s | 52.7258 s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Ji, H.; Liu, L. Adaptive Target Birth Intensity Multi-Bernoulli Filter with Noise-Based Threshold. Sensors 2019, 19, 1120. https://doi.org/10.3390/s19051120
Hu X, Ji H, Liu L. Adaptive Target Birth Intensity Multi-Bernoulli Filter with Noise-Based Threshold. Sensors. 2019; 19(5):1120. https://doi.org/10.3390/s19051120
Chicago/Turabian StyleHu, Xiaolong, Hongbing Ji, and Long Liu. 2019. "Adaptive Target Birth Intensity Multi-Bernoulli Filter with Noise-Based Threshold" Sensors 19, no. 5: 1120. https://doi.org/10.3390/s19051120
APA StyleHu, X., Ji, H., & Liu, L. (2019). Adaptive Target Birth Intensity Multi-Bernoulli Filter with Noise-Based Threshold. Sensors, 19(5), 1120. https://doi.org/10.3390/s19051120