Optical Fiber Cladding SPR Sensor Based on Core-Shift Welding Technology
Abstract
:1. Introduction
2. Experimental Section
2.1. The Optical Transmission Field of a Single-Mode Fiber When Using Normalized Welding and Core-Shift Welding
2.2. Transmission of the Light Field of the Gradient Index Multimode Fiber When Using Normalized Core Welding and Core-Shift Welding
2.3. The Transmission of the Light Field of the Step Refractive Index Multimode Fiber When Using Normalized Core Welding and Core-Shift Welding
2.4. Experimental Setup
3. Results and Discussions
3.1. Results
3.2. Discussion
3.2.1. Different Sensing Fiber Lengths
3.2.2. Different Displacements of Core-Shift Welding
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nomura, K.; Gopinath, S.C.; Lakshmipriya, T.; Fukuda, N.; Wang, X.; Fujimaki, M. An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing. Nat. Commun. 2013, 4, 2855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caucheteur, C.; Guo, T.; Albert, J. Review of plasmonic fiber optic biochemical sensors: Improving the limit of detection. Anal. Bloanal. Chem. 2015, 407, 3883–3897. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.C.C.; De Almeida, J.M.M.M.; Moayyed, H.; Santos, J.L.; Viegas, D. Multiplexing of surface plasmon resonance sensing devices on etched single-mode fiber. J. Lightwave Technol. 2015, 33, 432–438. [Google Scholar] [CrossRef]
- Coelho, L.; Almeida, J.M.M.M.D.; Santos, J.L.; Ferreira, R.A.S.; Viegas, D. Sensing structure based on surface plasmon resonance in chemically etched single mode optical fibres. Plasmonics 2015, 10, 319. [Google Scholar] [CrossRef]
- Tsai, W.H.; Tsao, Y.C.; Lin, H.Y.; Sheu, B.C. Cross-point analysis for a multimode fiber sensor based on surface plasmon resonance. Opt. Lett. 2005, 30, 2209. [Google Scholar] [CrossRef] [PubMed]
- Slavík, R.; Homola, J.; Čtyroký, J.; Brynda, E. Novel spectral fiber optic sensor based on surface plasmon resonance. Sens. Actuator B Chem. 2001, 74, 106–111. [Google Scholar] [CrossRef]
- Piliarik, M.; Homola, J.; ManíKová, Z.; Čtyroký, J. Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sens. Actuator B Chem. 2003, 90, 236–242. [Google Scholar] [CrossRef]
- Zhao, J.; Cao, S.; Liao, C.; Wang, Y.; Wang, G.; Xu, X.; Fu, C.; Xu, G.; Lian, J.; Wang, Y. Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sens. Actuator B Chem. 2016, 230, 206–211. [Google Scholar] [CrossRef]
- Kim, Y.C.; Peng, W.; Banerji, S.; Booksh, K.S. Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases. Opt. Lett. 2005, 30, 2218–2220. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Su, Y.; Liu, C.; Nie, X.; Liu, Z.; Zhang, Y.; Zhang, Y. Two-channel SPR sensor combined application of polymer- and vitreous-clad optic fibers. Sensors 2017, 17, 2862. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Liu, C.; Zhang, Y.; Lou, Y.; Nie, X.; Liu, Z.; Zhang, Y.; Peng, F.; Zhou, Z. Multi-channel SPR sensor based on the cascade application of the Single-mode and multimode optical fiber. Opt. Commun. 2017, 390, 82–87. [Google Scholar] [CrossRef]
- Wei, Y.; Su, Y.; Liu, C.; Zhang, Y.; Nie, X.; Liu, Z.; Zhang, Y.; Peng, F. Segmented detection SPR sensor based on seven-core fiber. Opt. Experss 2017, 25, 21841–21850. [Google Scholar] [CrossRef] [PubMed]
- Guo, T. Fiber grating assisted surface plasmon resonance for biochemical and electrochemical sensing. J. Lightw. Technol. 2016, 35, 3323–3333. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, T.; Zhang, X.; Xu, J.; Xie, W.; Nie, M.; Wu, Q.; Guan, B.; Albert, J. Plasmonic fiber-optic vector magnetometer. Appl. Phys. Lett. 2016, 108, 101105. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Liu, F.; Liang, X.; Qiu, X.; Albert, J. Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings. Biosens. Bioectron. 2015, 78, 221–228. [Google Scholar] [CrossRef]
- Han, L.; Guo, T.; Xie, C.; Xu, P.; Lao, J.; Zhang, X.; Xu, J.; Chen, X.; Huang, Y.; Liang, X.; et al. Specific Detection of Aquaporin-2 Using Plasmonic Tilted Fiber Grating Sensors. J. Lightw. Technol. 2017, 35, 3360–3365. [Google Scholar] [CrossRef]
- Villatoro, J.; Monzónhernández, D.; Mejía, E. Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors. Appl. Opt. 2003, 42, 2278–2283. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.K.; Gupta, B.D. A multitapered fiber-optic spr sensor with enhanced sensitivity. IEEE Photonics Technol. Lett. 2011, 23, 923–925. [Google Scholar] [CrossRef]
- Iga, M.; Seki, A.; Watanabe, K. Hetero-core structured fiber optic surface plasmon resonance sensor with silver film. Sens. Actuator B Chem. 2004, 101, 368–372. [Google Scholar] [CrossRef]
- Takagi, K.; Sasaki, H.; Seki, A.; Watanabe, K. Surface plasmon resonances of a curved hetero-core optical fiber sensor. Sens. Actuator A Phys. 2010, 161, 1–5. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Hu, J.; Wu, P.; Su, Y.; Liu, C.; Wang, S.; Nie, X.; Liu, L. Optical Fiber Cladding SPR Sensor Based on Core-Shift Welding Technology. Sensors 2019, 19, 1202. https://doi.org/10.3390/s19051202
Wei Y, Hu J, Wu P, Su Y, Liu C, Wang S, Nie X, Liu L. Optical Fiber Cladding SPR Sensor Based on Core-Shift Welding Technology. Sensors. 2019; 19(5):1202. https://doi.org/10.3390/s19051202
Chicago/Turabian StyleWei, Yong, Jiangxi Hu, Ping Wu, Yudong Su, Chunlan Liu, Shifa Wang, Xiangfei Nie, and Lu Liu. 2019. "Optical Fiber Cladding SPR Sensor Based on Core-Shift Welding Technology" Sensors 19, no. 5: 1202. https://doi.org/10.3390/s19051202
APA StyleWei, Y., Hu, J., Wu, P., Su, Y., Liu, C., Wang, S., Nie, X., & Liu, L. (2019). Optical Fiber Cladding SPR Sensor Based on Core-Shift Welding Technology. Sensors, 19(5), 1202. https://doi.org/10.3390/s19051202