Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compilation of Aerial Photograph Dataset
2.2. Preprocessing and Augmentation of Dataset
2.3. Deep-Learning-Based Detection Methods
3. Results and Discussion
3.1. Test Results
3.2. Counting Errors
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chabot, D.; Francis, C.M. Computer-automated bird detection and counts in high-resolution aerial images: A review. J. Field Ornithol. 2016, 87, 343–359. [Google Scholar] [CrossRef]
- Linchant, J.; Lisein, J.; Semeki, J.; Lejeune, P.; Vermeulen, C. Are unmanned aircraft systems (UAS s) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal Rev. 2015, 45, 239–252. [Google Scholar] [CrossRef]
- Jachmann, H. Estimating Abundance of African Wildlife: An Aid to Adaptive Management; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Burnham, K.P.; Anderson, D.R.; Laake, J.L. Estimation of density from line transect sampling of biological populations. Wildl. Monogr. 1980, 72, 3–202. [Google Scholar]
- Bibby, C.J.; Burgess, N.D.; Hill, D.A.; Mustoe, S. Bird Census Techniques; Academic Press: London, UK, 1992. [Google Scholar]
- Jachmann, H. Evaluation of four survey methods for estimating elephant densities. Afr. J. Ecol. 1991, 29, 188–195. [Google Scholar] [CrossRef]
- Jachmann, H.; Bell, R.H.V. The assessment of elephant numbers and occupance by means of droppings counts in the Kasungu National Park, Malawi. Afr. J. Ecol. 1979, 17, 231–239. [Google Scholar] [CrossRef]
- Merz, G. Counting elephants (Loxodonta africana cyclotis) in tropical rain forests with particular reference to the Tai National Park, Ivory Coast. Afr. J. Ecol. 1986, 24, 61–68. [Google Scholar] [CrossRef]
- Short, J.C. Density and seasonal movements of forest elephant (Loxodonta africana cyclotis, Matschie) in Bia National Park, Ghana. Afr. J. Ecol. 1983, 21, 175–184. [Google Scholar] [CrossRef]
- Gilmer, D.S.; Brass, J.A.; Strong, L.L.; Card, D.H. Goose counts from aerial photographs using an optical digitizer. Wildl. Soc. Bull. (1973–2006) 1988, 16, 204–206. [Google Scholar]
- Cunningham, D.J.; Anderson, W.H.; Anthony, R.M. An image-processing program for automated counting. Wildl. Soc. Bull. 1996, 24, 345–346. [Google Scholar]
- Trathan, P.N. Image analysis of color aerial photography to estimate penguin population size. Wildl. Soc. Bull. 2004, 32, 332–343. [Google Scholar] [CrossRef]
- Descamps, S.; Béchet, A.; Descombes, X.; Arnaud, A.; Zerubia, J. An automatic counter for aerial images of aggregations of large birds. Bird Study 2011, 58, 302–308. [Google Scholar] [CrossRef]
- Groom, G.; Petersen, I.K.; Fox, A.D. Sea bird distribution data with object based mapping of high spatial resolution image data. In Proceedings of the Rspsoc Annual Conference, Nottingham, UK, 11–14 September 2007. [Google Scholar]
- Groom, G.; Krag Petersen, I.; Anderson, M.D.; Fox, A.D. Using object-based analysis of image data to count birds: Mapping of Lesser Flamingos at Kamfers Dam, Northern Cape, South Africa. Int. J. Remote Sens. 2011, 32, 4611–4639. [Google Scholar] [CrossRef]
- Groom, G.; Stjernholm, M.; Nielsen, R.D.; Fleetwood, A.; Petersen, I.K. Remote sensing image data and automated analysis to describe marine bird distributions and abundances. Ecol. Inform. 2013, 14, 2–8. [Google Scholar] [CrossRef]
- Maussang, F.; Guelton, L.; Garello, R.; Chevallier, A. Marine life observation using classification algorithms on ocean surface photographs. In Proceedings of the OCEANS 2015-Genova, Genoa, Italy, 18–21 May 2015; pp. 1–4. [Google Scholar]
- Dunham, K.M. Trends in populations of elephant and other large herbivores in Gonarezhou National Park, Zimbabwe, as revealed by sample aerial surveys. Afr. J. Ecol. 2012, 50, 476–488. [Google Scholar] [CrossRef]
- Sasse, D.B. Job-related mortality of wildlife workers in the United States, 1937–2000. Wildl. Soc. Bull. 2003, 31, 1015–1020. [Google Scholar]
- Abd-Elrahman, A.; Pearlstine, L.; Percival, F. Development of pattern recognition algorithm for automatic bird detection from unmanned aerial vehicle imagery. Surv. Land Inf. Sci. 2005, 65, 37. [Google Scholar]
- Chabot, D.; Bird, D.M. Evaluation of an off-the-shelf unmanned aircraft system for surveying flocks of geese. Waterbirds 2012, 35, 170–174. [Google Scholar] [CrossRef]
- Grenzdörffer, G.J. UAS-based automatic bird count of a common gull colony. ISPRS Int. Arch. Photogramme. Remote Sens. Spat. Inform. Sci. 2013, XL-1/W2, 169–174. [Google Scholar]
- Liu, C.-C.; Chen, Y.-H.; Wen, H.-L. Supporting the annual international black-faced spoonbill census with a low-cost unmanned aerial vehicle. Ecol. Inform. 2015, 30, 170–178. [Google Scholar] [CrossRef]
- Norton-Griffiths, M. Counting animals. In Handbook No. 1; African Wildlife Leadership Foundation: Nairobi, Kenya, 1978. [Google Scholar]
- Quang, P.X.; Lanctot, R.B. A line transect model for aerial surveys. Biometrics 1991, 47, 1089–1102. [Google Scholar] [CrossRef]
- Johnson, B.K.; Lindzey, F.G.; Guenzel, R.J. Use of aerial line transect surveys to estimate pronghorn populations in Wyoming. Wildlife Society Bulletin (1973–2006) 1991, 19, 315–321. [Google Scholar]
- Slooten, E.; Dawson, S.M.; Rayment, W.J. Aerial surveys for coastal dolphins: Abundance of Hector’s dolphins off the South Island west coast, New Zealand. Mar. Mammal Sci. 2004, 20, 477–490. [Google Scholar] [CrossRef]
- White, G.C.; Bartmann, R.M.; Carpenter, L.H.; Garrott, R.A. Evaluation of aerial line transects for estimating mule deer densities. J. Wildl. Manag. 1989, 53, 625–635. [Google Scholar] [CrossRef]
- Walsh, P.; Reynolds, J.; Collins, G.; Russell, B.; Winfree, M.; Denton, J. Application of a double-observer aerial line-transect method to estimate brown bear population density in southwestern Alaska. J. Fish Wildl. Manag. 2010, 1, 47–58. [Google Scholar] [CrossRef]
- Helle, E. Aerial census of ringed seals Pusa hispida basking on the ice of the Bothnian Bay, Baltic. Ecography 1980, 3, 183–189. [Google Scholar] [CrossRef]
- Hiby, A.R.; Thompson, D.; Ward, A.J. Census of grey seals by aerial photography. Photogramm. Rec. 1988, 12, 589–594. [Google Scholar] [CrossRef]
- Woodworth, B.L.; Farm, B.P.; Mufungo, C.; Borner, M.; Ole Kuwai, J. A photographic census of flamingos in the Rift Valley lakes of Tanzania. Afr. J. Ecol. 1997, 35, 326–334. [Google Scholar] [CrossRef]
- Couturier, S.; Courtois, R.; Crépeau, H.; Rivest, L.-P.; Luttich, S. Calving photocensus of the Rivière George caribou herd and comparison with an independent census. Rangifer 1996, 16, 283–296. [Google Scholar] [CrossRef]
- Fraser, W.R.; Carlson, J.C.; Duley, P.A.; Holm, E.J.; Patterson, D.L. Using kite-based aerial photography for conducting Adelie penguin censuses in Antarctica. Waterbirds 1999, 435–440. [Google Scholar] [CrossRef]
- Bechet, A.; Reed, A.; Plante, N.; GIROUX, J.-F.; Gauthier, G. Estimating the size of the greater snow goose population. J. Wildl. Manag. 2004, 68, 639–649. [Google Scholar] [CrossRef]
- Ammour, N.; Alhichri, H.; Bazi, Y.; Benjdira, B.; Alajlan, N.; Zuair, M. Deep learning approach for car detection in UAV imagery. Remote Sens. 2017, 9, 312. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Neural Information Processing Systems Conference, Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1106–1114. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. Y You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 27–30 June 2016; pp. 580–587. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv, 2015; arXiv:1409.1556v6. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5 mb model size. arXiv, 2016; arXiv:1602.07360v4. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Chang, Y.-C.; Chen, H.-T.; Chuang, J.-H.; Liao, I.-C. Pedestrian Detection in Aerial Images Using Vanishing Point Transformation and Deep Learning. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018. [Google Scholar]
- Chen, F.; Ren, R.; Van de Voorde, T.; Xu, W.; Zhou, G.; Zhou, Y. Fast Automatic Airport Detection in Remote Sensing Images Using Convolutional Neural Networks. Remote Sens. 2018, 10, 443. [Google Scholar] [CrossRef]
- Maire, F.; Alvarez, L.M.; Hodgson, A. Automating marine mammal detection in aerial images captured during wildlife surveys: A deep learning approach. In Australasian Joint Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2015; pp. 379–385. [Google Scholar]
- Guirado, E.; Tabik, S.; Rivas, M.L.; Alcaraz-Segura, D.; Herrera, F. Automatic whale counting in satellite images with deep learning. bioRxiv 2018, 443671. [Google Scholar] [CrossRef]
- Fu, C.-Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. DSSD: Deconvolutional single shot detector. arXiv, 2017; arXiv:1701.06659. [Google Scholar]
- Howard, A.G. Some improvements on deep convolutional neural network based image classification. arXiv, 2013; arXiv:1312.5402. [Google Scholar]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2016; pp. 379–387. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv, 2018; arXiv:1804.02767. [Google Scholar]
- Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S. Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; Volume 4. [Google Scholar]
Wild Birds Imaging | Bird Decoys Imaging | |
---|---|---|
Imaging camera | NX-500, Samsung corp. | Da Jiang Innovation (DJI) camera |
Resolution | 6480 × 4320 pixels | 5472 × 3078 pixels |
Focal length | 35 mm | 8.8 mm |
Sensor size | 23.5 × 15.7 mm | 13.2 × 8.8 mm |
Altitude | 100 m | 50 m |
Field of View (FOV) | 67.1 m × 44.9 m | 81 m × 45.6 m |
Ground Sample Distance (GSD) | 0.0104 m/pixel | 0.0148 m/pixel |
Meta Architecture | Feature Extractor | Inference Time (ms/photograph) | AP | APwild | APmodel | |
---|---|---|---|---|---|---|
IOU:0.3 | IOU:0.5 | IOU:0.3 | IOU:0.3 | |||
Faster R-CNN | Resnet 101 | 95 | 95.44 | 80.63 | 96.18 | 95.23 |
Inception v.2 | 82 | 94.04 | 79.35 | 95.90 | 93.94 | |
R-FCN | Resnet 101 | 87 | 94.86 | 79.83 | 95.92 | 94.12 |
Retinanet | Resnet 50 | 75 | 91.49 | 73.66 | 92.37 | 83.75 |
Mobilenet v.1 | 57 | 85.01 | 66.01 | 90.05 | 62.64 | |
SSD | Mobilenet v.2 | 23 | 85.90 | 54.87 | 89.13 | 65.20 |
Yolo v3 | Darknet-53 | 41 | 91.80 | 58.53 | 91.98 | 90.77 |
Yolo v2 | Darknet-19 | 34 | 90.99 | 56.80 | 92.34 | 88.99 |
Tiny Yolo | 21 | 88.23 | 54.22 | 89.75 | 79.24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.-J.; Han, Y.; Kim, S.-Y.; Lee, A.-Y.; Kim, G. Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery. Sensors 2019, 19, 1651. https://doi.org/10.3390/s19071651
Hong S-J, Han Y, Kim S-Y, Lee A-Y, Kim G. Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery. Sensors. 2019; 19(7):1651. https://doi.org/10.3390/s19071651
Chicago/Turabian StyleHong, Suk-Ju, Yunhyeok Han, Sang-Yeon Kim, Ah-Yeong Lee, and Ghiseok Kim. 2019. "Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery" Sensors 19, no. 7: 1651. https://doi.org/10.3390/s19071651
APA StyleHong, S. -J., Han, Y., Kim, S. -Y., Lee, A. -Y., & Kim, G. (2019). Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery. Sensors, 19(7), 1651. https://doi.org/10.3390/s19071651