LightSit: An Unobtrusive Health-Promoting System for Relaxation and Fitness Microbreaks at Work
Abstract
:1. Introduction
2. Health-Promoting Technologies for Office Vitality
2.1. Sensing Technologies for Measuring Physical and Mental Health at Work
2.2. Ambient HCI for Promoting Health at Work
3. Design of LightSit
3.1. Design Considerations
3.1.1 Blend Microbreaks into a Work Routine Involving Desk Exercises
3.1.2 Embed Sensing and Feedback Technologies into the Office Environment
3.2. The Technical Development of LightSit
3.2.1. Sensors and Hardware
3.2.2. Sedentary Workstyle Tracking
3.2.3. Stress Detection
3.3. The Design of Interactive Applications
3.3.1. The Ambient Intervention Mode
3.3.2. The Interactive Exercise Mode
3.3.3. Assist with Lower Back Stretching
3.3.4. Facilitate Deep Breathing
4. The Showroom Evaluation of LightSit
4.1. The Study
4.1.1. Setup
4.1.2. Recruitment
4.1.3. Procedure and Data Collection
4.2. Results
4.2.1. Observations
4.2.2. Audience Feedback
5. Discussion
5.1. Design Implications
5.2. Limitations of the Study
6. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beach, T.A.C.; Parkinson, R.J.; Stothart, J.P.; Callaghan, J.P. Effects of prolonged sitting on the passive flexion stiffness of the in vivo lumbar spine. Spine J. 2005, 5, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Chandola, T.; Brunner, E.; Marmot, M. Chronic stress at work and the metabolic syndrome: prospective study. BMJ 2006, 332, 521–525. [Google Scholar] [CrossRef] [PubMed]
- TNO. Overview of Dutch Working Conditions. 2016. Available online: https://www.monitorarbeid.tno.nl/nieuws/overview-of-dutch-working-conditions-2016 (accessed on 17 March 2019).
- Van Wier, M.F.; Ariëns, G.A.M.; Dekkers, J.C.; Hendriksen, I.J.M.; Smid, T.; Van Mechelen, W. Phone and e-mail counselling are effective for weight management in an overweight working population: A randomized controlled trial. BMC Public Health 2009, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Aldana, S.G.; Merrill, R.M.; Price, K.; Hardy, A.; Hager, R. Financial impact of a comprehensive multisite workplace health promotion program. Prev. Med. 2005, 40, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Plotnikoff, R.C.; Brunet, S.; Courneya, K.S.; Spence, J.C.; Birkett, N.J.; Marcus, B.; Whiteley, J. The efficacy of stage-matched and standard public health materials for promoting physical activity in the workplace: The Physical Activity Workplace Study (PAWS). Am. J. Heal. Promot. 2007, 21, 501–509. [Google Scholar] [CrossRef]
- Morris, D.; Brush, A.J.B.; Meyers, B.R. SuperBreak: using interactivity to enhance ergonomic typing breaks. In Proceedings of the Twenty-Sixth Annual CHI Conference on Human Factors in Computing Systems-CHI ’08, Florence, Italy, 5–10 April 2008; p. 1817. [Google Scholar]
- Leung, K.; Reilly, D.; Hartman, K.; Stein, S.; Westecott, E. Limber: DIY wearables for reducing risk of office injury. In Proceedings of the Sixth International Conference on Tangible, Embedded and Embodied Interaction, Kingston, ON, Canada, 19–22 February 2012; pp. 85–86. [Google Scholar]
- Mateevitsi, V.; Reda, K.; Leigh, J.; Johnson, A. The health bar: A persuasive ambient display to improve the office worker’s well being. In Proceedings of the 5th augmented human international conference, Kobe, Japan, 7–08 March 2014; p. 21. [Google Scholar]
- Lin, J.J.; Mamykina, L.; Lindtner, S.; Delajoux, G.; Strub, H.B. Fish’n’Steps: Encouraging Physical Activity with an Interactive Computer Game. In UbiComp 2006: Ubiquitous Computing; Springer: Berlin/Heidelberg, Germany, 2006; pp. 261–278. ISBN 978-3-540-39634-5, 978-3-540-39635-2. [Google Scholar]
- Jafarinaimi, N.; Forlizzi, J.; Hurst, A.; Zimmerman, J. Breakaway: An Ambient Display Designed to Change Human Behavior. In Proceedings of the CHI ’05 Extended Abstracts on Human Factors in Computing Systems, Portland, OR, USA, 2–7 April 2005; pp. 1945–1948. [Google Scholar]
- Chung, C.-F.; Jensen, N.; Shklovski, I.A.; Munson, S. Finding the right fit: understanding health tracking in workplace wellness programs. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 4875–4886. [Google Scholar]
- Ren, X.; Yu, B.I.N.; Lu, Y.; Brombacher, A. Exploring cooperative fitness tracking to encourage physical activity among office workers. Proc. ACM Human-Comput. Interact. 2018, 2, 146. [Google Scholar]
- Koskinen, I.; Zimmerman, J.; Binder, T.; Redstrom, J.; Wensveen, S. Design research through practice: From the lab, field, and showroom; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 0123855039. [Google Scholar]
- Reilly, D.; Westecott, E.; Parker, D.; Perreault, S.; Neil, D.; Lapierre, N.; Hartman, K.; Bal, H. Design-driven research for workplace exergames: the limber case study. In Proceedings of the First International Conference on Gameful Design, Research, and Applications, Toronto, ON, Canada, 2–4 October 2013; pp. 123–126. [Google Scholar]
- Braun, A.; Schembri, I.; Frank, S. Exerseat-Sensor-supported exercise system for ergonomic microbreaks. In Proceedings of the 12th European Conference, AmI 2015, Athens, Greece, 11–13 November 2015; pp. 236–251. [Google Scholar]
- Peeters, M.; Megens, C.; van den Hoven, E.; Hummels, C.; Brombacher, A. Social stairs: taking the piano staircase towards long-term behavioral change. In Proceedings of the 8th International Conference, PERSUASIVE 2013, Sydney, NSW, Australia, 3–5 April 2013; pp. 174–179. [Google Scholar]
- Kim, S.B.; Lee, S.J.; Han, J.H. StretchArms: Promoting Stretching Exercise with a Smartwatch. Int. J. Hum. Comput. Interact. 2018, 34, 218–225. [Google Scholar] [CrossRef]
- Sztajzel, J. Heart rate variability: A noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med. Wkly. 2004, 134, 514–522. [Google Scholar]
- Hjortskov, N.; Rissén, D.; Blangsted, A.K.; Fallentin, N.; Lundberg, U.; Søgaard, K. The effect of mental stress on heart rate variability and blood pressure during computer work. Eur. J. Appl. Physiol. 2004, 92, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Healey, J.; Picard, R.W. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef]
- Yu, B.; Hu, J.; Funk, M.; Feijs, L. DeLight: Biofeedback through ambient light for stress intervention and relaxation assistance. Pers. Ubiquitous Comput. 2018, 22, 787–805. [Google Scholar] [CrossRef]
- Rundo, F.; Conoci, S.; Ortis, A.; Battiato, S. An advanced bio-inspired photoplethysmography (PPG) and ECG pattern recognition system for medical assessment. Sensors 2018, 18, 405. [Google Scholar] [CrossRef]
- Vinciguerra, V.; Ambra, E.; Maddiona, L.; Oliveri, S.; Romeo, M.F.; Mazzillo, M.; Rundo, F.; Fallica, G. Progresses towards a processing pipeline in photoplethysmogram (PPG) based on SiPMs. In Proceedings of the 2017 European Conference on Circuit Theory and Design (ECCTD), Catania, Italy, 4–6 September 2017; pp. 1–5. [Google Scholar]
- Cook, D.J.; Augusto, J.C.; Jakkula, V.R. Ambient intelligence: Technologies, applications, and opportunities. Pervasive Mob. Comput. 2009, 5, 277–298. [Google Scholar] [CrossRef]
- Hong, J.; Song, S.; Cho, J.; Bianchi, A. Better posture awareness through flower-shaped ambient avatar. In Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, Stanford, CA, USA, 15–19 January 2015; pp. 337–340. [Google Scholar]
- Moraveji, N.; Adiseshan, A.; Hagiwara, T. Breathtray: Augmenting respiration self-regulation without cognitive deficit. In Proceedings of the CHI’12 Extended Abstracts on Human Factors in Computing Systems, Austin, TX, USA, 5–10 May 2012; pp. 2405–2410. [Google Scholar]
- Fortmann, J.; Stratmann, T.; Boll, S.; Poppinga, B.; Heuten, W. Make Me Move at Work! An Ambient Light Display to Increase Physical Activity. In Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, Venice, Italy, 5–8 May 2013; pp. 274–277. [Google Scholar]
- Ren, X.; Lu, Y.; Visser, V.; Le, P.D.H.D.H.; Van Den Burg, R. Interaction Matters? Exploring Interactive Music as a Reminder to Break Sedentary Office Time. In Proceedings of the 34th International Symposium on Automation and Robotics in Construction (ISARC 2017), Taipei, Taiwan, 28 June–1 July 2017. [Google Scholar]
- Haller, M.; Richter, C.; Brandl, P.; Gross, S.; Schossleitner, G.; Schrempf, A.; Nii, H.; Sugimoto, M.; Inami, M. Finding the right way for interrupting people improving their sitting posture. In Proceedings of the IFIP Conference on Human-Computer Interaction, Lisbon, Portugal, 5–9 September 2011; pp. 1–17. [Google Scholar]
- Saunders, W.; Vogel, D. Tap-Kick-Click: Foot Interaction for a Standing Desk. In Proceedings of the 2016 ACM Conference on Designing Interactive Systems, Brisbane, QLD, Australia, 4–8 June 2016; pp. 323–333. [Google Scholar]
- Vidyarthi, J.; Riecke, B.E.; Gromala, D. Sonic Cradle: designing for an immersive experience of meditation by connecting respiration to music. In Proceedings of the designing interactive systems conference, Newcastle Upon Tyne, UK, 11–15 June 2012; pp. 408–417. [Google Scholar]
- Ren, X.; Yu, B.; Lu, Y.; Chen, Y.; Pu, P. HealthSit: Designing Posture-Based Interaction to Promote Exercise during Fitness Breaks HealthSit: Designing Posture-Based Interaction to Promote Exercise during Fitness Breaks. Int. J. Human–Computer Interact. 2019, 35, 870–885. [Google Scholar] [CrossRef]
- Kim, S.; Park, Y.A.; Niu, Q. Micro-break activities at work to recover from daily work demands. J. Organ. Behav. 2017, 38, 28–44. [Google Scholar] [CrossRef]
- Burkland, D.S. The Effects of Taking a Short Break: Task Difficulty, Need for Recovery and Task Performance. Master’s Thesis, University of Wisconsin-Stout, Menomonie, WI, USA, 2013. [Google Scholar]
- Ren, X.; Brankaert, R.; Visser, V.; Offermans, S.; Lu, Y.; Nagtzaam, H. FLOW pillow: Exploring sitting experience towards active ageing. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct, MobileHCI 2016, Florence, Italy, 6–9 September 2016. [Google Scholar]
- Ma, C.; Li, W.; Gravina, R.; Cao, J.; Li, Q.; Fortino, G. Activity level assessment using a smart cushion for people with a sedentary lifestyle. Sensors 2017, 17, 2269. [Google Scholar] [CrossRef] [PubMed]
- Interlink Force Sensing Resistor 406. Available online: https://www.interlinkelectronics.com/fsr-406 (accessed on 17 March 2019).
- Commissaris, D.; Reijneveld, K. Posture and movements during seated office work: results of a field study. In Proceedings of the Veiersted, B. Fostervold, K.I. Gould, K.S., 37th Annual Conf. Ergonomics as a tool in Future Development and Value Creation, Nordic Ergonomics Society (NES), Oslo, Norway, 10–12 October 2005; pp. 58–61. [Google Scholar]
- Chiu, Y.-Y.; Lin, W.-Y.; Wang, H.-Y.; Huang, S.-B.; Wu, M.-H. Development of a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration monitoring. Sens. Actuators A Phys. 2013, 189, 328–334. [Google Scholar] [CrossRef]
- Adafruit. Adafruit METRO M0 Express. Available online: https://learn.adafruit.com/adafruit-metro-m0-express-designed-for-circuitpython/overview (accessed on 17 March 2018).
- Benabbas, Y. Using the AT-09 BLE Module with the Arduino. Available online: https://medium.com/@yostane/using-the-at-09-ble-module-with-the-arduino-3bc7d5cb0ac2 (accessed on 17 March 2019).
- Reas, C.; Fry, B. Processing. Available online: https://processing.org (accessed on 17 March 2019).
- Adafruit. NexoPixel Digital RGB LED Strip. Available online: https://www.adafruit.com/product/1461?length=1 (accessed on 17 March 2019).
- Zemp, R.; Tanadini, M.; Plüss, S.; Schnüriger, K.; Singh, N.B.; Taylor, W.R.; Lorenzetti, S. Application of machine learning approaches for classifying sitting posture based on force and acceleration sensors. Biomed Res. Int. 2016, 2016, 5978489. [Google Scholar] [CrossRef]
- Nasr, M.; Ateia, M.; Hassan, K. Artificial intelligence for greywater treatment using electrocoagulation process. Sep. Sci. Technol. 2016, 51, 96–105. [Google Scholar] [CrossRef]
- Rundo, F.; Conoci, S.; Banna, G.L.; Ortis, A.; Stanco, F.; Battiato, S. Evaluation of Levenberg–Marquardt neural networks and stacked autoencoders clustering for skin lesion analysis, screening and follow-up. IET Comput. Vis. 2018, 12, 957–962. [Google Scholar] [CrossRef]
- Bruser, C.; Stadlthanner, K.; de Waele, S.; Leonhardt, S. Adaptive beat-to-beat heart rate estimation in ballistocardiograms. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Choe, S.-T.; Cho, W.-D. Simplified real-time heartbeat detection in ballistocardiography using a dispersion-maximum method. Biomed. Res. 2017, 28, 9. [Google Scholar]
- Yu, B.; Zhang, B.; Xu, L.; An, P.; Xue, M.; Hu, J. An Unobtrusive Stress Recognition System for the Smart Office. In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Berlin, Germany, 23–27 July 2019. (Accepted). [Google Scholar]
- Au-Yeung, S.S.Y. Does weight-shifting exercise improve postural symmetry in sitting in people with hemiplegia? Brain Inj. 2003, 17, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Wynne-Jones, G.; Cowen, J.; Jordan, J.L.; Uthman, O.; Main, C.J.; Glozier, N.; van der Windt, D. Absence from work and return to work in people with back pain: A systematic review and meta-analysis. Occup. Env. Med. 2014, 71, 448–456. [Google Scholar] [CrossRef]
- Moore, C.; Ceridan, E.; Schonard, C.; Marasa, M.; Shaib, F.; Holland, J. Prevention of low back pain in sedentary healthy workers: A pilot study. Am. J. Med. Sci. 2012, 344, 90–95. [Google Scholar]
- Sihawong, R.; Janwantanakul, P.; Jiamjarasrangsi, W. A prospective, cluster-randomized controlled trial of exercise program to prevent low back pain in office workers. Eur. Spine J. 2014, 23, 786–793. [Google Scholar] [CrossRef]
- Color Wipe Effect. Available online: https://www.tweaking4all.com/hardware/arduino/adruino-led-strip-effects/#LEDStripEffectColorWipe (accessed on 17 March 2019).
- Fire Effect. Available online: https://www.tweaking4all.com/hardware/arduino/adruino-led-strip-effects/#LEDStripEffectColorWipe (accessed on 17 March 2019).
- Yu, B.; Feijs, L.; Funk, M.; Hu, J. Designing auditory display of heart rate variability in biofeedback context. In Proceedings of the 21st International Conference on Auditory Display (ICAD 2015), Graz, Austria, 8–10 July 2015. [Google Scholar]
- Yu, B.; Funk, M.; Hu, J.; Feijs, L. Unwind: A musical biofeedback for relaxation assistance. Behav. Inf. Technol. 2018, 37, 800–814. [Google Scholar] [CrossRef]
- Lehrer, P.M.; Vaschillo, E.; Vaschillo, B.; Lu, S.-E.; Eckberg, D.L.; Edelberg, R.; Shih, W.J.; Lin, Y.; Kuusela, T.A.; Tahvanainen, K.U.O. Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosom. Med. 2003, 65, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, P.M.; Gevirtz, R. Heart rate variability biofeedback: how and why does it work? Front. Psychol. 2014, 5, 756. [Google Scholar] [CrossRef]
- Hekler, E.B.; Klasnja, P.; Froehlich, J.E.; Buman, M.P. Mind the Theoretical Gap: Interpreting, Using, and Developing Behavioral Theory in HCI Research. In Proceedings of the CHI ’13 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013; pp. 3307–3316. [Google Scholar]
- Dutch Design Week. Available online: https://www.ddw.nl/en/about-ddw (accessed on 17 March 2019).
- Zimmerman, J.; Forlizzi, J. Research through design in HCI. In Ways of Knowing in HCI; Springer: Berlin/Heidelberg, Germany, 2014; pp. 167–189. [Google Scholar]
- Kelly, J.; Wensveen, S. Designing to Bring the Field to the Showroom through Open-ended Provocation. Int. J. Des. 2014, 8, 2. [Google Scholar]
- Millen, D.R. Rapid ethnography: Time deepening strategies for HCI field research. In Proceedings of the 3rd Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, New York, NY, USA, 17–19 August 2000; pp. 280–286. [Google Scholar]
- Braun, V.; Clarke, V. Using Thematic Analysis in Psychology. Qual. Res. Psychol. 2006, 3, 77–101. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Yu, B.; Lu, Y.; Zhang, B.; Hu, J.; Brombacher, A. LightSit: An Unobtrusive Health-Promoting System for Relaxation and Fitness Microbreaks at Work. Sensors 2019, 19, 2162. https://doi.org/10.3390/s19092162
Ren X, Yu B, Lu Y, Zhang B, Hu J, Brombacher A. LightSit: An Unobtrusive Health-Promoting System for Relaxation and Fitness Microbreaks at Work. Sensors. 2019; 19(9):2162. https://doi.org/10.3390/s19092162
Chicago/Turabian StyleRen, Xipei, Bin Yu, Yuan Lu, Biyong Zhang, Jun Hu, and Aarnout Brombacher. 2019. "LightSit: An Unobtrusive Health-Promoting System for Relaxation and Fitness Microbreaks at Work" Sensors 19, no. 9: 2162. https://doi.org/10.3390/s19092162
APA StyleRen, X., Yu, B., Lu, Y., Zhang, B., Hu, J., & Brombacher, A. (2019). LightSit: An Unobtrusive Health-Promoting System for Relaxation and Fitness Microbreaks at Work. Sensors, 19(9), 2162. https://doi.org/10.3390/s19092162