Autonomous Visual Perception for Unmanned Surface Vehicle Navigation in an Unknown Environment
Abstract
:1. Introduction
2. Proposed Method
2.1. Adaptive Segmentation
2.2. Water Region Prediction Based on Multi Stage Segmentation
2.3. Segmentation Network
2.4. Online Training
2.5. Segmentation Improvement
2.5.1. Unary Potentials
2.5.2. Pairwise Potentials
3. Experimental Results
3.1. Adaptive Segmentation
3.2. Process of the Training Data Generating
3.3. Performance of the Proposed Method
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Matos, A.; Martins, A.; Dias, A.; Ferreira, B.; Almeida, J.M.; Ferreira, H.; Amaral, G.; Figueiredo, A.; Almeida, R.; Silva, F. Multiple robot operations for maritime search and rescue in euRathlon 2015 competition. In Proceedings of the OCEANS 2016-Shanghai, Shanghai, China, 10–13 April 2016; pp. 1–7. [Google Scholar]
- Yan, R.-J.; Pang, S.; Sun, H.-B.; Pang, Y.-J. Development and missions of unmanned surface vehicle. J. Mar. Sci. Appl. 2010, 9, 451–457. [Google Scholar] [CrossRef]
- Singh, Y.; Sharma, S.; Hatton, D.; Sutton, R. Optimal path planning of unmanned surface vehicles. Indian J. Geo-Mar. Sci. 2018, 47, 1325–1334. [Google Scholar]
- Singh, Y.; Sharma, S.; Sutton, R.; Hatton, D.; Khan, A. A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents. Ocean Eng. 2018, 169, 187–201. [Google Scholar] [CrossRef]
- Praczyk, T. Detection of land in marine images. Int. J. Comput. Intell. Syst. 2018, 12, 273–281. [Google Scholar] [CrossRef]
- Praczyk, T. A quick algorithm for horizon line detection in marine images. J. Mar. Sci. Technol. 2018, 23, 164–177. [Google Scholar] [CrossRef]
- Gershikov, E. Is color important for horizon line detection? In Proceedings of the 2014 International Conference on Advanced Technologies for Communications (ATC 2014), Hanoi, Vietnam, 15–17 October 2014; pp. 262–267. [Google Scholar]
- Gershikov, E.; Libe, T.; Kosolapov, S. Horizon line detection in marine images: which method to choose? Int. J. Adv. Intell. Syst. 2013, 6, 2013. [Google Scholar]
- Gershikov, E.; Baskin, C. Efficient horizon line detection using an energy function. In Proceedings of the International Conference on Research in Adaptive and Convergent Systems, Krakow, Poland, 20–23 September 2017; pp. 110–115. [Google Scholar]
- Zhan, W.-Q.; Xiao, C.-S.; Yuan, H.-W.; Wen, Y.-Q. Effective waterline detection for unmanned surface vehicles in inland water. In Proceedings of the 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, QC, Canada, 28 November–1 December 2017; pp. 1–6. [Google Scholar]
- Ji, Z.; Su, Y.-T.; Wang, J.; Hua, R. Robust sea-sky-line detection based on horizontal projection and hough transformation. In Proceedings of the 2009 2nd International Congress on Image and Signal Processing, Tianjin, China, 17–19 October 2009; pp. 1–4. [Google Scholar]
- Zafarifar, B.; Weda, H. Horizon detection based on sky-color and edge features. Proc. SPIE 2008, 6822. [Google Scholar] [CrossRef]
- Shen, Y.-F.; Krusienski, D.; Li, J.; Rahman, Z.-U. A hierarchical horizon detection algorithm. IEEE Geosci. Remote Sens. Lett. 2013, 10, 111–114. [Google Scholar] [CrossRef]
- Lu, J.-W.; Dong, Y.-Z.; Yuan, X.-H.; Lu, F.-L. An algorithm for locating sky-sea line. In Proceedings of the IEEE International Conference on Automation Science and Engineering, CASE’06, Shanghai, China, 8–10 October 2006; pp. 615–619. [Google Scholar]
- Yan, Y.; Shin, B.-S.; Mou, X.; Mou, W.; Wang, H. Efficient horizon detection on complex sea for sea surveillance. Int. J. Electr. Electron. Data Commun. 2015, 3, 49–52. [Google Scholar]
- Wang, H.; Wei, Z.; Wang, S.-S.; Ow, C.-S.; Ho, K.-T.; Feng, B. A vision-based obstacle detection system for unmanned surface vehicle. In Proceedings of the 2011 IEEE Conference on Robotics, Automation and Mechatronics (RAM), Qingdao, China, 17–19 September 2011; pp. 364–369. [Google Scholar]
- Ji, Z.; Yu, X.-J.; Yu, Y.-L.; He, Y.-Q. Manifold embedding for zero-shot recognition. Cogn. Syst. Res. 2019, 55, 34–43. [Google Scholar] [CrossRef]
- Ji, Z.; Xiong, K.-L.; Pang, Y.-W.; Li, X.-L. Video summarization with attention-based encoder-decoder networks. IEEE Trans. Circuits Syst. Video Technol. 2019. [Google Scholar] [CrossRef]
- Ji, Z.; Zhang, Y.-Y.; Pang, Y.-W.; Li, X.-L. Hypergraph dominant set based multi-video summarization. Signal Process. 2018, 148, 114–123. [Google Scholar] [CrossRef]
- Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Washington, DC, USA, 7–13 December 2015; pp. 1520–1528. [Google Scholar]
- Praczyk, T. Neural anti-collision system for autonomous surface vehicle. Neurocomputing 2015, 149, 559–572. [Google Scholar] [CrossRef]
- Praczyk, T. Artifcial neural networks application in maritime, coastal, spare positioning system. Theor. Appl. Inf. 2006, 18, 1175–1189. [Google Scholar]
- Fefilatyev, S.; Smarodzinava, V.; Hall, L.O.; Goldgof, D.B. Horizon detection using machine learning techniques. In Proceedings of the 2006 5th International Conference on Machine Learning and Applications (ICMLA’06), Orlando, FL, USA, 14–16 December 2006; pp. 17–21. [Google Scholar]
- Cheng, D.-C.; Meng, G.-F.; Cheng, G.-L.; Pan, C.-H. Senet: Structured edge network for sea–land segmentation. IEEE Geosci. Remote Sens. Lett. 2017, 14, 247–251. [Google Scholar] [CrossRef]
- Felzenszwalb, P.F.; Huttenlocher, D.P. Efficient graph-based image segmentation. Int. J. Comput. Vision 2004, 59, 167–181. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Krähenbühl, P.; Koltun, V. Efficient inference in fully connected CRFs with Gaussian edge potentials. Adv. Neural Inf. Process. Syst. 2011, 24, 109–117. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Tran. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv 2014, arXiv:1412.7062. [Google Scholar]
- Lin, G.; Milan, A.; Shen, C.; Reid, I. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 22–25 July 2017; pp. 1925–1934. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Tran. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
Equipment | Parameter | Value/Model |
---|---|---|
USV | length | 3.96 m |
width | 1.55 m | |
draft | 0.3~0.5 m | |
Max speed | 2.2 m/s | |
Computer | CPU | Intel i7-5820 |
GPU | Titan X | |
Memory | 32 GB |
Method | Video1 | Video2 | Video3 | Video4 | Video5 |
---|---|---|---|---|---|
K-mean 1 | 60.1 | 65.2 | 59.5 | 62.7 | 67.2 |
Graph-based 1 | 73.6 | 64.5 | 56.7 | 63.5 | 71.4 |
UNet 2 | 97.9 | 95.3 | 96.2 | 97.1 | 95.8 |
RefineNet 2 | 9.5 | 97.6 | 98.1 | 97.9 | 98.4 |
DeepLab 2 | 99.7 | 9.5 | 78.7 | 99.2 | 98.7 |
Ours 3 | 97.3 | 94.3 | 97.2 | 96.4 | 96.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, W.; Xiao, C.; Wen, Y.; Zhou, C.; Yuan, H.; Xiu, S.; Zhang, Y.; Zou, X.; Liu, X.; Li, Q. Autonomous Visual Perception for Unmanned Surface Vehicle Navigation in an Unknown Environment. Sensors 2019, 19, 2216. https://doi.org/10.3390/s19102216
Zhan W, Xiao C, Wen Y, Zhou C, Yuan H, Xiu S, Zhang Y, Zou X, Liu X, Li Q. Autonomous Visual Perception for Unmanned Surface Vehicle Navigation in an Unknown Environment. Sensors. 2019; 19(10):2216. https://doi.org/10.3390/s19102216
Chicago/Turabian StyleZhan, Wenqiang, Changshi Xiao, Yuanqiao Wen, Chunhui Zhou, Haiwen Yuan, Supu Xiu, Yimeng Zhang, Xiong Zou, Xin Liu, and Qiliang Li. 2019. "Autonomous Visual Perception for Unmanned Surface Vehicle Navigation in an Unknown Environment" Sensors 19, no. 10: 2216. https://doi.org/10.3390/s19102216