Magnetostrictive Sensor for Blockage Detection in Pipes Subjected to High Temperatures
Abstract
:1. Introduction
2. Magnetostrictive Sensors
2.1. Magnetostrictive Transducer
2.2. Characterization of the Magnetostrictive Transducer
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Behar, O. Solar thermal power plants—A review of configurations and performance comparison. Renew. Sustain. Energy Rev. 2018, 92, 608–627. [Google Scholar] [CrossRef]
- Liu, G.; Liu, J.; Jiaqiang, E.; Li, Y.; Zhang, Z.; Chen, J.; Zhao, X.; Hu, W. Effects of different sizes and dispatch strategies of thermal energy storage on solar energy usage ability of solar thermal power plant. Appl. Therm. Eng. 2019, 156, 14–22. [Google Scholar] [CrossRef]
- Sioshansi, R.; Denholm, P. The Value of Concentrating Solar Power and Thermal Energy Storage. IEEE Trans. Sustain. Energy 2010, 1, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Peiró, G.; Prieto, C.; Gasia, J.; Jové, A.; Miró, L.; Cabeza, L.F. Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation. Renew. Energy 2018, 121, 236–248. [Google Scholar] [CrossRef]
- Bauer, T.; Laing, D.; Tamme, R. Overview of PCMs for concentrated solar power in the temperature range 200 to 350 °C. Adv. Sci. Technol. 2010, 74, 272–277. [Google Scholar] [CrossRef]
- Laing, D.; Bahl, C.; Bauer, T.; Fiss, M.; Breidenbach, N.; Hempel, M. High- Temperature Solid-Media Thermal Energy Storage for Solar Thermal Power Plants. Proc. IEEE 2012, 100, 516–524. [Google Scholar] [CrossRef]
- Nils, B.; Claudia, M.; Henning, J.; Thomas, B. Overview of Novel Concepts and the DLR Test Facility TESIS. In Proceedings of the 10th International Renewable Energy Storage Conference, IRES 2016, Düsseldorf, Germany, 15–17 March 2016; Volume 99, pp. 120–129. [Google Scholar]
- González-Roubaud, E.; Pérez-Osorio, D.; Prieto, C. Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts. Renew. Sustain. Energy Rev. 2017, 80, 133–148. [Google Scholar] [CrossRef]
- Niu, X.; Duan, W.; Chen, H.-P.; Marques, H.R. Excitation and propagation of torsional T(0,1) mode for guided wave testing of pipeline integrity. Measurement 2019, 131, 341–348. [Google Scholar] [CrossRef]
- Andrés-Mayor, H.; Prieto, M.J.; Villegas, P.; Nuño, F.; Martín-Ramos, J.A.; Pernía, A. Development of Magnetostrictive Transducer Prototype for Blockage Detection on Molten Salt Pipes. Energies 2018, 11, 587. [Google Scholar] [CrossRef]
- Bertoncini, F.; De Lorenzo, G.; Giunta, G.; Raugi, M.; Turcu, F. Effect of Attenuation on Inspection Range and Sensitivity in Long-Range Guided Wave NDT of Coated and Buried Pipes. Net E J. 2010, 1–12, 9985. [Google Scholar]
- Rose, J.L.; Ditri, J.J.; Pilarski, A.; Rajana, K.M.; Carr, F.T. A guided wave inspection technique for nuclear steam generator tubing. NDT E Int. 1993, 27, 307–310. [Google Scholar] [CrossRef]
- Ditri, J.J.; Rose, J.L. Excitation of guided elastic wave modes in hollow cylinders by applied surface tractions. J. Appl. Phys. 1992, 72, 2589–2597. [Google Scholar] [CrossRef]
- Ma, J.; Lowe, M.J.S.; Simonetti, F. Feasibility study of blockage detection inside pipes using guided ultrasonic waves. Meas. Sci. Technol. 2007, 18, 2629–2641. [Google Scholar] [CrossRef]
- Charchuk, R.; Werstiuk, C.; Evans, M.; Sjerve, E. High Temperature Guided Wave Pipe Inspection. In Proceedings of the 4th International CANDU In-service Inspection Workshop and NDT in Canada 2012 Conference, Toronto, ON, Canada, 18–21 June 2012. [Google Scholar]
- Hirao, M.; Ogi, H. EMATs for Science and Industry: Noncontacting Ultrasonic Measurements; Springer Science & Business Media: Heidelberg, Germany, 2013. [Google Scholar]
- Williams, R. Theory of Magnetostrictive Delay Lines for Pulse and Continuous Wave Transmission. IEEE Trans. IRE Prof. Gr. Ultrason. Eng. 1959, 6, 16–32. [Google Scholar] [CrossRef]
- Francesco, B.; Marco, R.; Florin, T. Application of Ultrasonic Guided Waves in the Field of Cryogenic Fluids; ECNDT: Moscow, Russia, 2010. [Google Scholar]
- Kwun, H. Method and Apparatus Generating and Detecting Torsional Wave Inspection of Pipes or Tubes. U.S. Patent US 6429560 B1, 6 August 2002. [Google Scholar]
- Kim, Y.Y.; Kwon, Y.E. Review of magnetostrictive patch transducers and applications in ultrasonic nondestructive testing of waveguides. Ultrasonics 2015, 62, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Bertoncini, F.; Giunta, G.; Raugi, M.; Turcu, F. Overview and Experimental Evaluation of Magnetostrictive Transducers for Guided Wave Inspection. NDT E J. 2012, 17, 13162. [Google Scholar]
- Park, C.; Han, S.; Cho, S.; Kim, Y. The generation of torsional waves and the pipe diagnosis using magnetostrictive transducers. Proc. KNV 2004, 14, 144–149. [Google Scholar] [CrossRef]
- Park, C.I.; Cho, S.H.; Han, S.W.; Kim, Y.Y. Efficient generation and measurement of uided torsional waves using magnetostrictive nickel patches. In Proceedings of the EEE Ultrasonics Symposium, Montreal, QC, Canada, 23–27 August 2004; Volume 2, pp. 1290–1293. [Google Scholar]
- Vinogradov, S.A. Method and System for the Generation of torsional Guided Waves Using A Ferromagnetic Strip Sensor. U.S. Patent US7573261B, 11 August 2009. [Google Scholar]
- Kim, Y.-G.; Moon, H.-S.; Park, K.-J.; Lee, J.-K. Generating and detecting torsional guided waves using magnetostrictive sensors of crossed coils. NDT E Int. 2011, 44, 145–151. [Google Scholar] [CrossRef]
- Clough, M.; Fleming, M.; Dixon, S. Circumferential guided wave EMAT system for pipeline screening using shear horizontal ultrasound. NDT E Int. 2017, 86, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Starman, S.; Matz, V.; Kreidl, M.; Smid, R. Comparison of De-noising Methods Used for EMAT Signals. NDT Weld. Bull. 2006, 2006, 43. [Google Scholar]
- Cho, S.H.; Park, C.I.; Kim, Y.Y. Effects of the orientation of magnetostrictive nickel strip on torsional wave transduction efficiency of cylindrical waveguides. Appl. Phys. Lett. 2005, 86, 244101. [Google Scholar] [CrossRef]
- Cegla, J.I. EMAT phased array: A feasibility study of surface crack detection. Ultrasonics 2017, 78, 1–9. [Google Scholar]
- Thring, C.B.; Fan, Y.; Edwards, R.S. Focused Rayleigh wave EMAT for characterisation of surface-breaking defects. NDT E Int. 2016, 81, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Heinlein, S.; Cawley, P.; Vogt, T.K. Reflection of torsional T(0,1) guided waves from defects in pipe bends. NDT E Int. 2018, 93, 57–63. [Google Scholar] [CrossRef]
- Xu, C.; Yang, Z.; Tian, S.; Chen, X. Lamb wave inspection for composite laminates using a combined method of sparse reconstruction and delay-and-sum. Compos. Struct. 2019, 233, 110973. [Google Scholar] [CrossRef]
- Herdovics, B.; Cegla, F. Compensation of phase response changes in ultrasonic transducers caused by temperature variations. Struct. Health Monit. 2019, 18, 508–523. [Google Scholar] [CrossRef]
Thermocouple | Salt Temperature (°C) | External Temperature (°C) |
---|---|---|
TT-13WSX30CT001-JTC1 position A | 312,25 | |
Thermocouple position B | 294 | 286 |
Thermocouple position C | 290 | 282 |
Thermocouple position D | 285 | 277 |
Thermocouple position E | 281 | 273 |
HTF | Minimum Temperature (°C) | Maximum Temperature (°C) |
---|---|---|
Nitrate salts | 265 | 565 |
Sodium liquid | 270 | 530 |
Carbonate salts | 450 | 700 |
Material | ∆L/L |
---|---|
Nickel | −33 × 10−6 |
Cobalt | 60 × 10−6 |
45 Permalloy | 27 × 10−6 |
Permendur-2 V | 70 × 10−6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pernía, A.M.; Mayor, H.A.; Prieto, M.J.; Villegas, P.J.; Nuño, F.; Martín-Ramos, J.A. Magnetostrictive Sensor for Blockage Detection in Pipes Subjected to High Temperatures. Sensors 2019, 19, 2382. https://doi.org/10.3390/s19102382
Pernía AM, Mayor HA, Prieto MJ, Villegas PJ, Nuño F, Martín-Ramos JA. Magnetostrictive Sensor for Blockage Detection in Pipes Subjected to High Temperatures. Sensors. 2019; 19(10):2382. https://doi.org/10.3390/s19102382
Chicago/Turabian StylePernía, Alberto M., Héctor Andrés Mayor, Miguel J. Prieto, Pedro J. Villegas, Fernando Nuño, and Juan A. Martín-Ramos. 2019. "Magnetostrictive Sensor for Blockage Detection in Pipes Subjected to High Temperatures" Sensors 19, no. 10: 2382. https://doi.org/10.3390/s19102382
APA StylePernía, A. M., Mayor, H. A., Prieto, M. J., Villegas, P. J., Nuño, F., & Martín-Ramos, J. A. (2019). Magnetostrictive Sensor for Blockage Detection in Pipes Subjected to High Temperatures. Sensors, 19(10), 2382. https://doi.org/10.3390/s19102382