Review on V2X, I2X, and P2X Communications and Their Applications: A Comprehensive Analysis over Time
Abstract
:1. Introduction
Outline
- To situate the industrial and scientific progress through the examination of who, when, and about what the research has been done on emerging technologies for smart cities, especially focused on V2X, I2X, and P2X communications;
- To systematically collect features on the type of vehicular communication, field of study, technologies, and applications to establish a time reference frame on significant characteristics;
- To undertake a comprehensive bibliographical analysis on the relationship of the publications comparing the most productive countries and organizations along time, as well as to the inference of an emerging technology over other;
- To review what future milestones lead technologies to more powerful applications on V2X, I2X, and P2X.
2. Taxonomic and Technical Analysis
- To provide clarity and stability regarding the role played by the V2X, I2X, and P2X communications;
- To provide a useful framework that saves time and effort during the development of specifications and technical requirements (e.g., in standards);
- To respond to issues of scope for the writing of future regulations, laws, and policies.
- Vehicle-to-Everything (V2X): Communication from vehicle to any entity, which includes in-vehicle connectivity (IN-V) with sensors (V2S) or other onboard devices (V2D) such as infotainment systems. This definition often encompasses the terms for car to all/car to everything (C2X), car to car (C2C) or vehicle to other vehicles (V2V) such as motorcycles (V2M). This classification group also includes other more specific types of interactions, such as vehicle to grid (V2G) to communicate with smart grids to receive or return electricity, car to infrastructure (C2I) or vehicle to infrastructure (V2I) to communicate with the road (V2R), such as road side units (RSUs) acting as stand-alone units or relay nodes that provide safety and traffic updates (e.g., traffic lights), vehicle to networks (V2N), heterogeneous vehicular networks (HetVNET) or vehicular sensor networks (VSN). These last also include vehicle to broadband cloud (V2B) or vehicle to cloud (V2C) communications utilized for software upgrades or information updates. V2I also includes vehicle to home (V2H) appliances such as lighting or air conditioners, while the car to pedestrian (C2P), vehicle to pedestrian (V2P), or vehicle to phone (V2P) communications may include smartphones and wearables worn by persons. Note that the term vehicle-to-home must be disambiguated with respect to the term vehicle to humans (V2H).
- Infrastructure-to-Everything (I2X): Communication from infrastructure to any entity, which may include other infrastructures (I2I), vehicles (I2V), or pedestrians (I2P). This term must be disambiguated with respect to the term individual to individual (I2I).
- Pedestrian-to-Everything (P2X): Communication from pedestrian to any entity including other pedestrians (P2P), infrastructure (P2I), and vehicles (P2V). Note that these terms must be disambiguated with respect to the peer to peer (P2P) and payment to individual (P2I) approaches.
Technological Profile of the Survey
3. State-Of-The-Art
3.1. Government and Regulatory Agencies
3.2. Primary Research in Literature
3.2.1. Road Safety
3.2.2. Cybersecurity
3.2.3. Commercial Applications
3.2.4. Other Directions of Research
3.3. Industry Interest in V2X, I2X, and P2X Communication
4. Bibliographic Analysis
Evolution of Mobile Devices, Sensors, and Intelligent Applications for Smart Cities
5. Future Trends and Challenges
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3G | Third Generation |
4G | Fourth Generation |
5G | Fifth Generation |
5GAA | 5G Automotive Association |
AV | Autonomous Vehicle |
C2C | Car to Car |
C2I | Car to Infrastructure |
C2X | Car to All/Everything |
CSMA | Carrier Sense Multiple Access |
C-V2X | Cellular V2X |
D2D | Device to Device |
EATA | European Automotive and Telecom Alliance |
eV2X | Enhanced V2X |
EWM | Emergency Warning Messages |
FCC | Federal Communications Commission |
FOV | Field of View |
HetVNET | Heterogeneous Vehicular Network |
I2I | Infrastructure-to-infrastructure |
I2P | Infrastructure-to-pedestrian |
I2V | Infrastructure-to-vehicle |
I2X | Infrastructure-to-everything |
ICT | Information and Communication Technologies |
ICT | Intelligent Connected Transport |
ICV | Intelligent Connected Vehicle |
IEEE | Institute of Electrical and Electronics Engineers |
IN-V | In-vehicle |
ITS | Intelligent Transport Systems |
IoT | Internet of Things |
IOTA | Internet of Things Application |
ITU | International Telecommunication Union |
ITU-R | ITU Radiocommunication Sector |
LoRaWAN | Long Range WAN |
LOS | Line-of-sight |
LPWAN | Low Power Wide Area Network |
LTE | Long Term Evolution |
LTE-M | LTE Machine |
LTE-V | LTE for vehicles |
M2M | Machine-to-machine |
MANET | Mobile Ad Hoc Network |
MBMS | Multimedia Broadcast Multicast Service |
NB-IoT | Narrow Band IoT |
NDN | Name Data Networking |
P2I | Pedestrian-to-infrastructure |
P2P | Pedestrian-to-pedestrian |
P2V | Pedestrian-to-vehicle |
P2X | Pedestrian-to-everything |
QoS | Quality of Service |
R&D | Research and Development |
RFID | Radio Frequency Identification |
RSU | Roadside Unit |
SDN | Software-defined Networking |
TaaS | Transportation as a Service |
TDMA | Time Division Multiple Access |
V2B | Vehicle-to-broadband Cloud |
V2C | Vehicle-to-cloud |
V2D | Vehicle-to-device |
V2G | Vehicle-to-grid |
V2H | Vehicle-to-home |
V2I | Vehicle-to-infrastructure |
V2N | Vehicle-to-network |
V2M | Vehicle-to-motorcycle |
V2P | Vehicle-to-pedestrian |
V2R | Vehicle-to-road |
V2S | Vehicle-to-sensor |
V2V | Vehicle-to-vehicle |
V2X | Vehicle-to-everything |
VANET | Vehicular Ad Hoc Network |
VFC | Vehicular Fog Computing |
VLC | Visible Light Communication |
VSN | Vehicular Sensor Network |
WAVE | Wireless Access in Vehicular Environments |
Wi-Fi | Wireless Fidelity |
WSN | Wireless Sensor Network |
WiMAX | Worldwide Interoperability for Microwave Access |
Appendix A
Reference | Type | Case of Use | Players | Technology | Application | Country | Year |
---|---|---|---|---|---|---|---|
[12,13,28,37,43,55,56,59,63,66,71,72,73,74,75,86,93,94,95,98,104,107,108,113,115,121] | V2V and V2I | Survey, Analytical model, Road safety, Security, Others, Patent | Vehicles and Infrastructures | 2G, 3G, 4G, LTE, Cell band, 802.11p, 802.11 standards, WiFi, IEEE 1609.4, VLC, WiMax, 802.11b/g and WLAN-based | VANET, ITS, Communications and Smart cities | UK, India, US, Germany, Singapore, China, Australia, France, Canada, S. Korea, Spain, Japan | 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 |
[29,30,31,50] | V2I and V2R | Survey, Analytical model | Vehicles, Infrastructures and Road | 802.11, 802.11p, 802.11e-based and 802.11a-based | Communications, VANET and ITS | US, Germany, US, France | 2003, 2007, 2014 |
[32,33,34,35,36,39,40,41,42,44,45,46,47,49,51,52,55,57,58,60,61,62,70,76,77,78,79,80,81,82,84,88,92,100,105,106,109,110,111,114,120] | V2V | Analytical model, Survey, Road safety, Security, Multimedia, Patent | Vehicles, RSUs and APs | 802.16, 802.11 standards, 802.11p, IEEE 1609.4, Visible light, 2G, 3G, 4G, LTE, WiMax, RFID and Bluetooth | Communications, ITS, VANET and Smart cities | US, UK, Sweden, China, Belgium, Germany, Italy, Austria, S. Africa, Canada, Thailand, Spain, Portugal | 2004, 2005, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 |
[38,48,68,83,87,89,96,102,103,116,123] | V2I | Analytical model, Security, Road safety, Patent | Vehicles, Infrastructures and RSUs | 802.11 standards, 802.11p, SFN, 3G, RFID | Communications, ITS, VANET and Smart cities | Spain, UK, Canada, Taiwan, Germany, US | 2008, 2009, 2010, 2012, 2015, 2011 |
[53] | C2C | Analytical model | Vehicles | 5 GHz, 24 GHz and 76 GHz | ITS and Communications | Germany | 2011 |
[64,65,69,101,112,117,118,119,122] | V2X | Analytical model, Survey, Security, Simulation, Patent | Vehicles, Pedestrians, Infrastructures, etc. | 802.11p, 3GPP, 4G, LTE, Cell band, WiMaxand 802.11 standards | Communications, ITS, VANET and Smart cities | China, S. Korea, Canada, Netherlands, US | 2011, 2015, 2016, 2017 |
[67] | V2V, V2I and V2C | Survey | Vehicles, Infrastructures and Cloud | 802.11 standards and LTE | Communications, ITS, VANET and Smart cities | China | 2015 |
[99] | V2V, V2I and I2V | Security | Vehicles and Infrastructures | - | ITS, VANET, Communications and Smart cities | Netherlands | 2015 |
[85,124] | I2V | Road safety, Patent | Infrastructures and Vehicles | AM or FM radio, GPS, RFID and Cell band | Smart cities and ITS | Spain, US | 2010 |
[90] | V2C and V2V | Road safety | Vehicles and Cloud | - | ITS, VANET and Smart cities | China | 2016 |
[91] | M2M | Road safety | Smartphones and Cloud | 802.11 standards | Smart cities, Smartphones and IOT | India | 2012 |
[97] | C2P | Survey | Vehicles and Pedestrian | 802.15.4, 802.11p, 3G and 4G | ITS and Smart cities | China | 2017 |
[119] | V2P | Patent | Vehicles and Pedestrians | 802.11 standards | Smart cities and ITS | US | 2016 |
[125] | I2X | Patent | Vehicles, Infrastructures, Pedestrians, etc. | LAN, MAN, WAN, Cell band, WLAN, Bluetooth andWiMax | Smart cities and ITS | France | 2015 |
[126] | I2P and I2V | Patent | Infrastructure, Pedestrian and Vehicles | High frequency carrier | Smart cities | France | 2004 |
[127] | P2I | Patent | Pedestrian and Infrastructures | Wireless, GPS and Bluetooth | Smart cities and ITS | Spain | 2016 |
[128] | P2V | Patent | Pedestrian and Vehicles | Cell band, WLAN, PAN andWiMax | Smart cities and ITS | Germany | 2010 |
References
- Cohen, B. What Exactly is a Smart City? Technical Report. 2012. Available online: https://www.fastcompany.com (accessed on 18 June 2019).
- Yesner, R.; O’Brien, A.; Zannoni, M. IDC Future Scape: Worldwide Smart Cities and Communities 2019 Predictions. Available online: https://www.idc.com/getdoc.jsp?containerId=US42449818 (accessed on 19 June 2019).
- Kutami, M.; Takeno, M.; Ioka, H. New Approach for Environmental Future City Created by ICT: Sustainable City Network. Fujitsu Sci. Tech. J. 2014, 50, 100–111. [Google Scholar]
- Maglaras, L.A.; Al-Bayatti, A.H.; He, Y.; Wagner, I.; Janicke, H. Social Internet of Vehicles for Smart Cities. J. Sens. Actuator Netw. 2016, 5, 3. [Google Scholar] [CrossRef]
- Xiong, Z.; Sheng, H.; Rong, W.; Cooper, D.E. Intelligent transportation systems for smart cities: A progress review. Sci. China Inf. Sci. 2012, 55, 2908–2914. [Google Scholar] [CrossRef]
- Bowerman, B.; Braverman, J.; Taylor, J.; Todosow, H.; von Wimmersperg, U. The Vision of a Smart City. In Proceedings of the 2nd International Life Extension Technology Workshop, Paris, France, 28 September 2000; Volume 28. [Google Scholar]
- Su, K.; Li, J.; Fu, H. Smart city and the applications. In Proceedings of the 2011 International Conference on Electronics, Communications and Control, Ningbo, China, 9–11 September 2011; pp. 1028–1031. [Google Scholar]
- IndustryARC. Industrial Internet of Things (IIoT) Market: By Components (Sensors, Memory, Processors, RFID); By End Use Industry (Manufacturing, Transportation, Energy, Retail, Healthcare, Agriculture)—Forecast (2016–2021); Technical Report; IndustryARC: Hyderabad, Telangana, India, 24 June 2016. [Google Scholar]
- Cisco Systems, Corp. Cisco Visual Networking Index: Forecast and Trends, 2017–2022. Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html (accessed on 19 June 2019).
- TechVision Group of Frost & Sullivan. Vehicle-to-Everything Technologies for Connected Cars: DSRC and Cellular Technologies Drive Opportunities. Available online: https://edisciplinas.usp.br/pluginfile.php/4136479/mod_resource/content/1/V2X%20Vehicle%20to%20Everything%20for%20Connected%20Cars.pdf (accessed on 19 June 2019).
- Muhammada, M.; Safdar, G.A. Survey on existing authentication issues for cellular-assisted V2X communication. Veh. Commun. 2018, 12, 50–65. [Google Scholar] [CrossRef]
- Hartenstein, H.; Laberteaux, K.P. A tutorial survey on vehicular ad hoc networks. IEEE Commun. Mag. 2018, 46, 164–171. [Google Scholar] [CrossRef]
- Kakkasageri, M.S.; Manvi, S.S. Information management in vehicular ad hoc networks: A review. J. Netw. Comput. Appl. 2014, 39, 334–350. [Google Scholar] [CrossRef]
- Hasrouny, H.; Samhat, A.E.; Bassil, C.; Laouiti, A. VANet security challenges and solutions: A survey. Veh. Commun. 2017, 7, 7–20. [Google Scholar] [CrossRef]
- Sun, S.H.; Hu, J.L.; Peng, Y.; Zhao, L.; Fang, J.Y. Support for vehicle-to-everything services based on LTE. IEEE Wirel. Commun. 2018, 23, 4–8. [Google Scholar] [CrossRef]
- Ndashimye, E.; Ray, S.K.; Sarkar, N.I.; Gutiérrez, J.A. Vehicle-to-infrastructure communication over multi-tier heterogeneous networks: A survey. Comput. Netw. 2017, 112, 144–166. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Y.; Qiu, H.; Gao, L.; Du, Z.; Chen, S. Big Wave of the Intelligent Connected Vehicles. China Commun. 2016, 2, 27–41. [Google Scholar] [CrossRef]
- Davidson, T. Automotive Vehicle-to-Everything (V2X) Communications Market 2014–2024; Automotive Industries: London, UK, 2014. [Google Scholar]
- Van Wee, B.; Banister, D. How to write a literature review paper? Transp. Rev. 2016, 36, 278–288. [Google Scholar]
- Chochliouros, I.P.; Spiliopoulou-Chochliourou, A.S.; Lalopoulos, G.K. Emergency Call (eCall) services based on approved E-112 regulations and infrastructures: A solution to improve security and release of road help. J. Commun. Netw. 2005, 4, 76–84. [Google Scholar]
- Tachikawa, K. Global Standards on ITS radio communications. Available online: https://itsforum.gr.jp/Public/E4Meetings/P01/tachikawa5_5_3.pdf (accessed on 19 June 2019).
- 5GAA. White Paper on ITS Spectrum Utilization in the Asia Pacific Region. Available online: http://5gaa.org/wp-content/uploads/2018/07/5GAA_WhitePaper_ITS-spectrum-utilization-in-the-Asia-Pacific-Region_FINAL_160718docx.pdf. (accessed on 19 June 2019).
- 3rd Generation Partnership Project, Technical Specification Group Service and System Aspects. Summary of Rel-14 Work Items (Release 14). Available online: https://www.miroctum.com/wp-content/uploads/2019/04/Release14.pdf (accessed on 19 June 2019).
- 3rd Generation Partnership Project, Technical Specification Group Service and System Aspects. Summary of Rel-15 Work Items (Release 15). Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3389 (accessed on 19 June 2019).
- Radio Spectrum Management. Intelligent Transport Systems. Available online: https://www.rsm.govt.nz/business-individuals/buying-electrical-and-electronic-products-in-new-zealand/intelligent-transport-systems/ (accessed on 19 June 2019).
- Alam, M. Vehicle-to-Everything (V2X) Technology Will Be a Literal Life Saver—But What Is It. Available online: http://eecatalog.com/chipdesign/2016/05/19/vehicle-to-everything-v2x-technology-will-be-a-literal-life-saver-but-what-is-it/ (accessed on 19 June 2019).
- British Columbia Freedom of Information and Privacy Association. The Connected Car: Who is in the Driver’s Seat? Available online: https://fipa.bc.ca/wordpress/wp-content/uploads/2018/01/CC_report_lite.pdf. (accessed on 19 June 2019).
- Eze, E.C.; Zhang, S.; Liu, E. Vehicular ad hoc networks (VANETs): Current state, challenges, potentials and way forward. In Proceedings of the 20th International Conference on Automation and Computing: Future Automation, Computing and Manufacturing, Cranfield, UK, 12–13 September 2014; pp. 176–181. [Google Scholar]
- Zhu, J.; Roy, S. MAC for dedicated short range communications in intelligent transport system. IEEE Commun. Mag. 2003, 41, 60–67. [Google Scholar]
- Eichler, S. Performance evaluation of the IEEE 802.11p WAVE communication standard. In Proceedings of the IEEE Vehicular Technology Conference, Baltimore, MD, USA, 30 September–3 October 2007; pp. 2199–2203. [Google Scholar]
- Ma, X.; Chen, X. Delay and broadcast reception rates of highway safety applications in vehicular ad hoc networks. In Proceedings of the Mobile Networking for Vehicular Environments, Anchorage, AK, USA, 11 May 2007; pp. 85–90. [Google Scholar]
- Sen, I.; Matloak, D.W. Vehicle-vehicle channel models for the 5-GHz band. IEEE Trans. Intell. Transp. Syst. 2008, 9, 235–245. [Google Scholar] [CrossRef]
- Matolak, D.W. Channel modeling for vehicle-to-vehicle communications. IEEE Commun. Mag. 2008, 46, 76–83. [Google Scholar] [CrossRef]
- Cheng, L.; Henty, B.E.; Cooper, R.; Stancil, D.D.; Bai, F. A measurement study of time-scaled 802.11a waveforms over the mobile-to-mobile vehicular channel at 5.9 GHz. IEEE Commun. Mag. 2008, 46, 84–91. [Google Scholar] [CrossRef]
- Wang, C.X.; Cheng, X.; Laurenson, D. Vehicle-to-vehicle channel modeling and measurements: Recent advances and future challenges. IEEE Commun. Mag. 2009, 47, 96–103. [Google Scholar] [CrossRef]
- Wu, X.; Subramanian, S.; Guha, R.; White, R.G.; Li, J.; Lu, K.W.; Bucceri, A.; Zhang, T. Vehicular communications using DSRC: Challenges, enhancements, and evolution. IEEE J. Sel. Areas Commun. 2013, 31, 399–408. [Google Scholar]
- Wu, H.; Fujimoto, R.; Riley, G. Analytical models form information propagation in vehicle-to-vehicle networks. IEEE Veh. Technol. Conf. 2004, 60, 4548–4552. [Google Scholar]
- Wu, H.; Fujimoto, R.M.; Riley, G.F.; Hunter, M. Spatial propagation of information in vehicular networks. IEEE Trans. Veh. Technol. 2009, 58, 420–431. [Google Scholar] [CrossRef]
- Gozalvez, J.; Sepulcre, M.; Bauza, R. IEEE 802.11p vehicle to infrastructure communications in urban environments. IEEE Commun. Mag. 2012, 59, 176–183. [Google Scholar] [CrossRef]
- Abbas, T.; Sjöberg, K.; Karedal, J.; Tufvesson, F. A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations. Int. J. Antennas Propag. 2015, 2015, 190607. [Google Scholar] [CrossRef]
- Boban, M.; Vinhoza, T.T.V.; Ferreira, M.; Barros, J.; Tonguz, O.K. Impact of vehicles as obstacles in Vehicular Ad Hoc Networks. IEEE J. Sel. Areas Commun. 2011, 29, 15–28. [Google Scholar] [CrossRef]
- He, R.; Molisch, A.F.; Tufvesson, F.; Zhong, Z.; Ai, B.; Zhang, T. Vehicle-to-vehicle propagation models with large vehicle obstructions. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2237–2248. [Google Scholar] [CrossRef]
- Karedal, J.; Czink, N.; Paier, A.; Tufvesson, F.; Molisch, A.F. Path loss modeling for vehicle-to-vehicle communications. IEEE Trans. Veh. Technol. 2011, 60, 323–328. [Google Scholar] [CrossRef]
- Zhu, K.; Niyato, D.; Wang, P.; Hossain, E.; In Kim, D. Mobility and handoff management in vehicular networks: A survey. Wirel. Commun. Mob. Comput. 2011, 11, 459–476. [Google Scholar] [CrossRef]
- Renaudin, O.; Kolmonen, V.M.; Vainikainen, P.; Oestges, C. Non-stationary narrowband MIMO inter-vehicle channel characterization in the 5-GHz band. IEEE Trans. Veh. Technol. 2010, 59, 2007–2015. [Google Scholar] [CrossRef]
- Cheng, X.; Yao, Q.; Wang, C.X.; Ai, B.; Stuber, G.L.; Yuan, D.; Jiao, B.L. An improved parameter computation method for a MIMO V2V Rayleigh fading channel simulator under non-isotropic scattering environments. IEEE Commun. Lett. 2013, 17, 265–268. [Google Scholar] [CrossRef]
- Boban, M.; Barros, J.; Tonguz, O.K. Geometry-based vehicle-to-vehicle channel modeling for large-scale simulation. IEEE Trans. Veh. Technol. 2014, 63, 4146–4164. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, C.X.; Cheng, X.; Ai, B.; Laurenson, D.I. Novel 3D geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels. IEEE Trans. Wirel. Commun. 2014, 13, 298–309. [Google Scholar] [CrossRef]
- Ghazal, A.; Wang, C.X.; Ai, B.; Yuan, D.; Haas, H. A Nonstationary Wideband MIMO Channel Model for High Mobility Intelligent Transportation System. IEEE Trans. Intell. Transp. Syst. 2015, 16, 885–897. [Google Scholar] [CrossRef]
- Di Felice, M.; Chowdhury, K.R.; Bononi, L. Cooperative spectrum management in cognitive vehicular Ad Hoc networks. In Proceedings of the IEEE Vehicular Networking Conference, Amsterdam, The Netherlands, 14–16 November 2011; pp. 47–54. [Google Scholar]
- Singh, K.D.; Rawat, P.; Bonnin, J.M. Cognitive radio for vehicular ad hoc networks (CR-VANETs): Approaches and challenges. Eurasip J. Wirel. Commun. Netw. 2014, 2014, 49. [Google Scholar] [CrossRef]
- Paier, A.; Karedal, J.; Czink, N.; Dumard, C.; Zemen, T.; Tufvesson, F.; Molisch, A.F.; Mecklenbräuker, C.F. Characterization of vehicle-to-vehicle radio channels from measurements at 5.2 GHz. Wirel. Pers. Commun. 2009, 50, 19–32. [Google Scholar] [CrossRef]
- Cheng, X.; Yao, Q.; Wen, M.; Wang, C.X.; Song, L.Y.; Jiao, B.L. Wideband channel modeling and intercarrier interference cancellation for Vehicle-to-Vehicle communication systems. IEEE J. Sel. Areas Commun. 2013, 31, 434–448. [Google Scholar] [CrossRef]
- Sturm, C.; Wiesbeck, W. Waveform design and signal processing aspects for fusion wireless communications and radar sensing. Proc. IEEE 2011, 99, 1236–1259. [Google Scholar] [CrossRef]
- Yu, S.H.; Shih, O.; Tsai, H.M.; Roberts, R.D. Smart automotive lighting for vehicle safety. IEEE Commun. Mag. 2013, 51, 50–59. [Google Scholar] [CrossRef]
- Yao, Y.; Rao, L.; Liu, X. Performance and reliability analysis of IEEE 802.11p safety communications in a highway environment. IEEE Trans. Veh. Technol. 2013, 62, 4198–4212. [Google Scholar] [CrossRef]
- Alexander, P.; Haley, D.; Grant, A. Cooperative intelligent transport systems: 5.9-GHz field trials. Proc. IEEE 2011, 99, 1213–1235. [Google Scholar] [CrossRef]
- Bilstrup, K.; Uhlemann, E.; Strm, E.G.; Bilstrup, U. On the ability of the 802.11p MAC method and STDMA to support real-time vehicle-to-vehicle communication. Eurasip J. Wirel. Commun. Netw. 2009, 2009, 902414. [Google Scholar] [CrossRef]
- Booysen, M.J.; Zeadally, S.; Van Rooyen, G.J. Survey of media access control protocols for vehicular ad hoc networks. IET Commun. 2011, 5, 1619–1631. [Google Scholar] [CrossRef]
- Hadded, M.; Muhlethaler, P.; Laouiti, A.; Zagrouba, R.; Saidane, L.A. TDMA-Based MAC Protocols for Vehicular Ad Hoc Networks: A Survey, Qualitative Analysis, and Open Research Issues. IEEE Commun. Surv. Tutor. 2015, 17, 2461–2492. [Google Scholar] [CrossRef] [Green Version]
- Alasmary, W.; Zhuang, W. Mobility impact in IEEE 802.11p infrastructureless vehicular networks. Ad Hoc Netw. 2012, 10, 22–230. [Google Scholar] [CrossRef]
- Fernandez, J.A.; Borries, K.; Cheg, L.; Vijaya Kumar, B.V.K.; Stancil, D.D.; Bai, F. Performance of the 802.11p physical layer in vehicle-to-vehicle environments. IEEE Trans. Veh. Technol. 2012, 61, 3–14. [Google Scholar] [CrossRef]
- Zhao, Z.; Cheng, X.; Wen, M.; Jiao, B.; Wang, C.X. Channel estimation schemes for IEEE 802.11p standard. IEEE Intell. Transp. Syst. Mag. 2013, 5, 38–49. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Shi, Y.; Zhao, L. LTE-V: A TD-LTE-Based V2X Solution for Future Vehicular Network. IEEE Internet Things J. 2016, 3, 997–1005. [Google Scholar] [CrossRef]
- Seo, H.; Lee, K.D.; Yasukawa, S.; Peng, Y.; Sartori, P. LTE evolution for vehicle-to-everything services. IEEE Commun. Mag. 2016, 54, 22–28. [Google Scholar] [CrossRef]
- Shafiee, K.; Attar, A.; Leung, V.C.M. Optimal distributed vertical handoff strategies in vehicular heterogeneous networks. IEEE J. Sel. Areas Commun. 2011, 29, 534–544. [Google Scholar] [CrossRef]
- Zheng, K.; Zheng, Q.; Chatzimisios, P.; Xiang, W.; Zhou, P. Heterogeneous Vehicular Networking: A Survey on Architecture, Challenges and Solutions. IEEE Commun. Surv. Tutor. 2015, 17, 2377–2396. [Google Scholar] [CrossRef]
- Belanović, P.; Valerio, D.; Paier, A.; Zemen, T.; Ricciato, F.; Mecklenbräuer, C.F. On wireless links for vehicle-to-infrastructure communications. IEEE Trans. Veh. Technol. 2010, 59, 269–282. [Google Scholar]
- Abboud, K.; Omar, H.A.; Zhuang, W. Interworking of DSRC and Cellular Network Technologies for V2X Communications: A Survey. IEEE Trans. Veh. Technol. 2016, 65, 9457–9470. [Google Scholar] [CrossRef]
- Sum, W.; Ström, E.G.; Brännström, F.; Sou, K.C.; Sui, Y. Radio Resource Management for D2D-Based V2V Communication. IEEE Trans. Veh. Technol. 2016, 65, 6636–6650. [Google Scholar]
- Wang, L.; Wakikawa, R.; Kuntz, R.; Vuyyuru, R.; Zhang, L. Data naming in vehicle-to-vehicle communications. In Proceedings of the IEEE INFOCOM Workshops, Orlando, FL, USA, 25–30 March 2012; pp. 328–333. [Google Scholar]
- Wang, L.; Afanasyev, A.; Kuntz, R.; Vuyyuru, R.; Wakikawa, R.; Zhang, L. Rapid traffic information dissemination using named data. In Proceedings of the International Symposium on Mobile Ad Hoc Networking and Computing, Hilton Head, SC, USA, 11 June 2012; pp. 7–12. [Google Scholar]
- Troung, N.B.; Lee, G.M.; Ghamri-Doudane, Y. Software defined networking-based vehicular Ad hoc Network with Fog Computing. In Proceedings of the IFIP/IEEE International Symposium on Integrated Network Management, Ottawa, ON, Canada, 11–15 May 2015; pp. 1202–1207. [Google Scholar]
- Liu, K.; Ng, J.K.Y.; Lee, V.C.S.; Son, S.H.; Stojmenovic, I. Cooperative Data Scheduling in Hybrid Vehicular Ad Hoc Networks: VANET as Software Defined Network. IEEE/ACM Trans. Netw. 2016, 24, 1759–1773. [Google Scholar] [CrossRef]
- Bilal, S.M.; Bernardos, C.J.; Guerrero, C. Position-based routing in vehicular networks: A survey. J. Netw. Comput. Appl. 2013, 36, 685–697. [Google Scholar] [CrossRef]
- Ye, F.; Adams, M.; Roy, S. V2V wireless communication protocol for rear-end collision avoidance on highways. In Proceedings of the IEEE International Conference on Communications, Beijing, China, 19–23 May 2008; pp. 375–379. [Google Scholar]
- Yang, X.; Liu, J.; Zhao, F.; Vaidya, N.H. A vehicle-to-vehicle communication protocol for cooperative collision warning. In Proceedings of the 1st International Conference on Mobile and Ubiquitous Systems: Networking and Services, Boston, MA, USA, 26–26 August 2004; pp. 114–123. [Google Scholar]
- Bauza, R.; Gozalvez, J.; Sanchez-Soriano, J. Road Traffic Congestion Detection through Cooperative Vehicle-to-Vehicle Communications. In Proceedings of the Conference on Local Computer Network, Denver, CO, USA, 10–14 October 2010; pp. 606–612. [Google Scholar]
- Bauza, R.; Gozalvez, J. Traffic congestion detection in large-scale scenarios using vehicle-to-vehicle communications. J. Netw. Comput. Appl. 2013, 5, 1295–1307. [Google Scholar] [CrossRef]
- Kenney, J.B.; Bansal, G.; Rohrs, C.E. LIMERIC: A linear message rate control algorithm for vehicular DSRC systems. In Proceedings of the Annual International Conference on Mobile Computing and Networking, Las Vegas, NV, USA, 1 September 2011; pp. 21–30. [Google Scholar]
- Bansal, G.; Kenney, J.B.; Rohrs, C.E. LIMERIC: A linear adaptive message rate algorithm for DSRC congestion control. IEEE Trans. Veh. Technol. 2013, 62, 4182–4197. [Google Scholar] [CrossRef]
- Milanés, V.; Pérez, J.; Onieva, E.; González, C. Controller for Urban intersections based on wireless communication and fuzzy logic. IEEE Trans. Intell. Transp. Syst. 2010, 11, 243–248. [Google Scholar] [CrossRef]
- Milanés, V.; Villagrá, J.; Godoy, J.; Simó, J.; Pérez, J.; Onieva, E. An intelligent V2I-based traffic management system. IEEE Trans. Intell. Transp. Syst. 2012, 13, 49–58. [Google Scholar] [CrossRef]
- Hafner, M.R.; Cunningham, D.; Caminiti, L.; Del Vecchio, D. Cooperative collision avoidance at intersections: Algorithms and experiments. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1162–1175. [Google Scholar] [CrossRef]
- Pérez, J.; Seco, F.; Milanés, V.; Jiménez, A.; Díaz, J.C.; de Pedro, T. An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals. Sensors 2010, 10, 5872–5887. [Google Scholar] [CrossRef] [Green Version]
- Loos, S.M.; Platzer, A.; Nistor, L. Adaptive cruise control: Hybrid, distributed, and now formally verified. In FM 2011: Formal Methods; Lectures Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; pp. 42–56. [Google Scholar]
- Milanes, V.; Godoy, J.; Villagra, J.; Pérez, J. Automated on-ramp merging system for congested traffic situations. IEEE Trans. Intell. Transp. Syst. 2011, 12, 500–508. [Google Scholar] [CrossRef]
- Ge, J.I.; Orosz, G. Dynamics of connected vehicle systems with delayed acceleration feedback. Transp. Res. Part C Emerg. Technol. 2014, 4, 46–64. [Google Scholar] [CrossRef]
- Rakha, H.; Kamalanathsharma, R.K. Eco-driving at signalized intersections using V2I communications. In Proceedings of the IEEE Conference on Intelligent Transportation System, Washington, DC, USA, 5–7 October 2011; pp. 341–346. [Google Scholar]
- Wang, J.; Liu, J.; Shao, Z.; Vasilakos, A.V.; Imran, M.; Zhou, K. Mobile crowd sensing for traffic prediction in Internet of vehicles. Sensors 2016, 16, 77. [Google Scholar]
- Ghose, A.; Biswas, P.; Bhaumik, C.; Sharma, M.; Pal, A.; Jha, A. Road condition monitoring and alert application: Using in-vehicle smartphone as internet-connected sensor. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops, Lugano, Switzerland, 19–23 March 2012; pp. 489–491. [Google Scholar]
- Gomes, P.; Olaverri-Monreal, C.; Ferreira, M. Making vehicles transparent through V2V video streaming. IEEE Trans. Intell. Transp. Syst. 2012, 13, 930–938. [Google Scholar] [CrossRef]
- Yamazato, T.; Takai, I.; Okada, H.; Fujii, T.; Yendo, T.; Arai, S.; Andoh, M.; Harada, T.; Yasutomi, K.; Kagawa, K.; et al. Image-sensor-based visible light communication for automotive applications. IEEE Commun. Mag. 2014, 50, 88–97. [Google Scholar] [CrossRef]
- Takai, I.; Harada, T.; Andoh, M.; Yasutomi, K.; Kagawa, K.; Kawahito, S. Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver. IEEE Photonics J. 2014, 6, 1–14. [Google Scholar] [CrossRef]
- Katrakazas, C.; Quddus, M.; Chen, W.H.; Deka, L. Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions. Transp. Res. Part C Emerg. Technol. 2015, 60, 416–442. [Google Scholar] [CrossRef]
- Priemer, C.; Friedrich, B. A decentralized adaptive traffic signal control using V2I communication data. In Proceedings of the IEEE Conference on Intelligent Transportation System, St. Louis, MO, USA, 4–7 October 2009; pp. 765–770. [Google Scholar]
- Jing, P.; Huang, W.; Chen, L. Car-to-pedestrian communication safety system based on the vehicular Ad-Hoc network environment: A systematic review. Information 2017, 8, 127. [Google Scholar] [CrossRef]
- Weiß, C. V2X communications in Europe—From research projects towards standardization and field testing of communication technology. Comput. Netw. 2011, 55, 3103–3119. [Google Scholar] [CrossRef]
- Petit, J.; Shladover, S.E. Potential Cyberattacks on Automated Vehicles. IEEE Trans. Intell. Transp. Syst. 2015, 16, 546–556. [Google Scholar] [CrossRef]
- Amoozadeh, M.; Raghuramu, A.; Chuah, C.N.; Ghosal, D.; Michael Zhang, H.; Rowe, J.; Levitt, K. Security vulnerabilities of connected vehicle streams and their impact on cooperative driving. IEEE Commun. Mag. 2015, 53, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Petit, J.; Schaub, F.; Feiri, M.; Kargl, F. Pseudonym Schemes in Vehicular Networks: A survey. IEEE Commun. Surv. Tutor. 2015, 17, 228–255. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, R.; Lin, X.; Ho, P.; Shen, X. An efficient identify-based batch verification scheme for vehicular sensor networks. In Proceedings of the 27th IEEE Communications Society Conference on Computer Communications, Phoenix, AZ, USA, 13–18 April 2008; pp. 816–824. [Google Scholar]
- Li, C.; Hwang, M.S.; Chu, Y.P. A secure and efficient communication scheme with authenticated key establishment and privacy preserving for vehicular ad hoc networks. Comput. Commun. 2008, 31, 2803–2814. [Google Scholar] [CrossRef]
- Wu, Q.; Domingo-Ferrer, J.; González-Nicolás, U. Balanced trustworthiness, safety and privacy in vehicle-to-vehicle communications. IEEE Trans. Veh. Technol. 2010, 59, 559–573. [Google Scholar]
- Hass, J.J.; Hu, Y.C.; Laberteaux, K.P. Efficient certificate revocation list organization and distribution. IEEE J. Sel. Areas Commun. 2011, 29, 595–604. [Google Scholar] [CrossRef]
- Whyte, W.; Weimerskirch, A.; Kumar, V.; Hehm, T. A security credential management system for V2V communications. In Proceedings of the IEEE Vehicular Networking Conference, Boston, MA, USA, 16–18 December 2013; pp. 1–8. [Google Scholar]
- Zhang, L.; Wu, Q.; Solana, A.; Domingo-Ferrer, J. A scalable robust authentication protocol for secure vehicular communications. IEEE Trans. Veh. Technol. 2010, 60, 323–328. [Google Scholar] [CrossRef]
- Ibrahim, S.; Hamdy, M. Enabling less-infrastructures road communication networks for VANETs. In Proceedings of the 4th International Conference on Computer Science and Network Technology, Harbin, China, 19–20 December 2015; pp. 1063–1069. [Google Scholar]
- Raychaudhuri, D.; Mandayam, N.B. Frontiers of wireless and mobile communications. Proc. IEEE 2012, 100, 824–840. [Google Scholar] [CrossRef]
- Gou, M.; Ammar, M.H.; Zegura, E.W. V3: A vehicle-to-vehicle live video streaming architecture. In Proceedings of the 3th IEEE International Conference on Pervasive Computing and Communications, Kauai Island, HI, USA, 8–12 March 2005; pp. 171–180. [Google Scholar]
- Su, H.; Zhang, X. Clustering-based multichannel MAC protocols for QoS provisioning over vehicular ad hoc networks. IEEE Trans. Veh. Technol. 2007, 56, 3309–3323. [Google Scholar]
- Schünemann, B. V2X simulation runtime infrastructure VSimRTI: An assessment tool to design smart traffic management systems. Comput. Netw. 2011, 5, 3189–3198. [Google Scholar] [CrossRef]
- Barrachina, J.; Garrido, P.; Fouge, M.; Martinez, F.J.; Cano, J.C.; Calafate, C.T.; Manzoni, P. Road side unit deployment: A density-based approach. IEEE Intell. Transp. Syst. Mag. 2013, 5, 30–39. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.E.; Wang, J.; Cao, D.; Li, K. Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies. IEEE Trans. Intell. Transp. Syst. 2016, 17, 14–26. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, X.; Yao, Q.; Wang, C.X.; Yang, Y.; Jiao, B. Interference graph-based resource-sharing schemes for vehicular networks. IEEE Trans. Veh. Technol. 2013, 62, 4028–4039. [Google Scholar] [CrossRef]
- Miller, J.M.; Jones, P.T.; Li, J.M.; Onar, O.C. ORNL experience and challenges facing dynamic wireless power charging of EV’s. IEEE Circuits Syst. Mag. 2015, 15, 40–53. [Google Scholar] [CrossRef]
- Ova, K.R.; Bauer, T.; Jingtao, M.; Hatcher, K.Z. Hybrid distributed prediction of traffic signal state changes. WO2017003793A1, 5 January 2017. [Google Scholar]
- Bauer, T.; Jingtao, M.; Offermann, F. An Online Prediction System of Traffic Signal Status for Assisted Driving on Urban Streets: Pilot in the United States, China and Germany. ITE J. 2015, 85, 37–43. [Google Scholar]
- Strickland, R.D.; Yuan, M.; Bai, S.; Webber, D.; Miucic, R. Vehicle to Pedestrian Communication System and Method. U.S. Patents US9421909B2, 23 August 2016. [Google Scholar]
- Hara, Y.; Naka, T.; Egawa, S.; Koga, M. Vehicle Support Systems for Pedestrians to cross Roads and Support Methods for Pedestrians to cross Roads. EP2333742B1, 15 June 2011. [Google Scholar]
- Stählin, U.; Menzel, M.; Schaefer, M.; Baier, R.; Möller, U.; Gee, R.; Erdem, B.; Willnecker, T.; Bauer, O.; Aunkofer, M. Transmission of Vehicle-Relevant Data of Vehicle via Mobile Communication. WO2009074655A1, 18 June 2009. [Google Scholar]
- Kim, K.; Kang, H.; Kwon, S.; Mok, Y. Apparatus and Method for Providing Service in Vehicle to Everything Communication System. WO2017010826A1, 19 January 2017. [Google Scholar]
- Guerrero de Mier, A.; González Carvajal, R.; Martín Clemente, R.; Hornillo Mellado, S.; Muñoz Chavero, F. Procedimiento y sistema para el inventariado de carreteras utilizando tecnología inalámbrica. ES2373835B1, 31 August 2012. [Google Scholar]
- Harrison, M.A.; Michaelson, D. Vehicle/Crosswall Communication System. U.S. Patents US20100039291A1, 18 Febuary 2010. [Google Scholar]
- Beaurepaire, J.; Beaurepaire, P.; Tuukkanen, M. Method and apparatus for providing vehicle synchronization to facilitate a crossing. WO2015117859A1, 13 August 2015. [Google Scholar]
- Verschaeve, P. Method and Device for Triggering Signal Beacon. WO2003075245A3, 4 March 2004. [Google Scholar]
- Rufo Sánchez, F. Dispositivo de señalización vial para advertencia automática de la presencia de ciclistas y peatones en la vía. ES-1161639U, 26 July 2016. [Google Scholar]
- Klaus, D. Method for Avoiding Collisions. WO2010037823A1, 8 Apirl 2010. [Google Scholar]
- Mateo Sanguino, T.J. 50 years of rovers for planetary exploration: A retrospective review for future directions. Robot. Auton. Syst. 2017, 94, 172–185. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J. Advances in water use efficiency in agriculture: A bibliometric analysis. Water 2018, 10, 377. [Google Scholar] [CrossRef]
- Heradio, R.; De La Torre, L.; Galan, D.; Cabrerizo, F.J.; Herrera-Viedma, E.; Dormido, S. Virtual and remote labs in education: A bibliometric analysis. Comput. Educ. 2016, 98, 14–38. [Google Scholar] [CrossRef]
- Mateo Sanguino, T.J.; Lozano Domínguez, J.M.; Carvalho Baptista, P. Review on Cybersecurity Certification & Auditing of Automotive Industry. Adv. Transp. Policy Planing 2019, 5. in press. [Google Scholar]
- Van Eck, N.J.; Waltman, L. Visualizing bibliometric networks. In Measuring Scholarly Impact: Methods and Practice; Springer: Cham, Switzerland, 2014; pp. 285–320. [Google Scholar]
- Abrol, A.; Jha, R.K. Power Optimization in 5G Networks: A Step towards GrEEn Communication. IEEE Access 2016, 4, 1355–1374. [Google Scholar] [CrossRef]
- 5G Automotive Association. Timeline for Deployment of C-V2X—Update. Available online: http://5gaa.org/wp-content/uploads/2019/01/5GAA_White-Paper-CV2X-Roadmap.pdf (accessed on 19 June 2019).
- Yadav, S.; Singh, S. Review Paper on Development of Mobile Wireless Technologies (1G to 5G). Int. J. Comput. Sci. Mob. Comput. 2018, 7, 94–100. [Google Scholar]
- Oughton, E.; Frias, Z.; Russell, T.; Sicker, D.; Cleevely, D.D. Towards 5G: Scenario-based assessment of the future supply and demand for mobile telecommunications infrastructure. Technol. Forecast. Soc. Chang. 2018, 133, 141–155. [Google Scholar] [CrossRef]
- Singh, R.; Sicker, D. Improving spectrum efficiency in heterogeneous networks using granular identification. Lect. Notes Inst. Comput. Sci. Soc. Inform. Telecommun. Eng. 2019, 261, 189–199. [Google Scholar]
- Matten, L. NB-IoT (LTE Cat NB1): Pros and Cons of the New LPWA Standard. mm1 Technology. Available online: http://home.sogang.ac.kr/sites/gsinfotech/study/Lists/b19/Attachments/30/LPWA_compare.pdf (accessed on 19 June 2019).
- Popov, S. The Tangle. White Paper. 2017, pp. 1–28. Available online: https://static.coinpaprika.com/storage/cdn/whitepapers/165497.pdf (accessed on 19 June 2019).
- Dasgupta, K.; Babu, M.R. A review on crypto-currency transactions using IOTA (Technology). In Springer Briefs in Applied Sciences and Technology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 67–81. [Google Scholar]
- Yuva, N.; Kırbaş, I. Directed Acyclic Graph Based on Crypto Currency Application Example: IOTA. In Proceedings of the International Conference on Data Science and Applications, Porto, Portugal, 26–28 July 2018; pp. 92–99. [Google Scholar]
- Silva, R.; Iqbal, R. Ethical Implications of Social Internet of Vehicles Systems. IEEE Internet Things J. 2019, 6, 517–531. [Google Scholar] [CrossRef]
- Zekri, A.; Jia, W. Heterogeneous vehicular communications: A comprehensive study. Ad Hoc Netw. 2018, 75–76, 52–79. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Lam, K.-Y. Autonomous Vehicle: Security by Design. arXiv 2018, arXiv:1810.00545. [Google Scholar]
- Barber, A. Status of Work in Process on ISO/SAE 21434 Automotive Cybersecurity Standard. Available online: https://www.sans.org/cyber-security-summit/archives/file/summit-archive-1525889601.pdf (accessed on 19 June 2019).
- International Organization for Standardization/International Electrotechnical Commission. ISO/IEC 20243: Information Technology—Open Trusted Technology Provider™ Standard (O-TTPS)—Mitigating Maliciously Tainted and Counterfeit Products. Available online: https://webstore.iec.ch/preview/info_isoiec20243%7Bed1.0%7Den.pdf (accessed on 19 June 2019).
R | Country | MP | MP (%) | CA | IC | CR | CR (%) |
---|---|---|---|---|---|---|---|
1 | USA | 667 | 19.24 | 344 | 46 | 7856 | 31.55 |
2 | China | 538 | 15.52 | 340 | 30 | 3573 | 14.35 |
3 | S. Korea | 332 | 9.57 | 101 | 22 | 1266 | 5.08 |
4 | Germany | 302 | 8.71 | 175 | 32 | 3600 | 14.46 |
5 | France | 221 | 6.37 | 167 | 36 | 1690 | 6.78 |
6 | India | 219 | 6.31 | 26 | 14 | 676 | 2.71 |
7 | Japan | 207 | 5.97 | 72 | 19 | 919 | 3.69 |
8 | Spain | 178 | 5.13 | 133 | 29 | 2337 | 9.38 |
9 | Canada | 139 | 4.01 | 109 | 29 | 1465 | 5.88 |
10 | UK | 133 | 3.83 | 131 | 39 | 1706 | 6.85 |
R | Organization | CL | MP | MP (%) | NC | CR | CR (%) |
---|---|---|---|---|---|---|---|
1 | Beijing Univ. Posts and Telecom. (BUPT) | U | 66 | 1.92 | 47 | 345 | 1.38 |
2 | Beijing Jiaotong Univ. (BJUT) | U | 60 | 1.74 | 50 | 455 | 1.83 |
5 | Univ. Politècnica de València (UPV) | U | 39 | 1.13 | 27 | 350 | 1.41 |
6 | Hanyang Univ. | U | 39 | 1.13 | 12 | 95 | 0.38 |
7 | Electronics and Telecom. Research Institute (ETRI) | I | 38 | 1.10 | 21 | 156 | 0.63 |
8 | Tsinghua Univ. | U | 38 | 1.10 | 43 | 303 | 1.22 |
15 | DeutschesZentrum fur Luft-Und Raumfahrt (DLR) | I | 31 | 0.90 | 29 | 131 | 0.53 |
25 | ConsiglioNazionaledelleRicerche (CNR) | I | 24 | 0.69 | 18 | 200 | 0.80 |
27 | Qatar Mobility Innov. Center (QMIC) | I | 24 | 0.69 | 15 | 233 | 0.94 |
30 | Instituto de Telecomunicações (IT) | I | 22 | 0.64 | 29 | 428 | 1.72 |
R | Organization | MP | MP (%) | NC | CR | CR (%) |
---|---|---|---|---|---|---|
3 | General Motors (GM) | 49 | 1.43 | 56 | 641 | 2.57 |
22 | Volvo | 26 | 0.76 | 54 | 322 | 1.29 |
40 | Toyota Info Tech. Center | 19 | 0.55 | 21 | 235 | 0.94 |
45 | Volkswagen AG | 18 | 0.52 | 23 | 137 | 0.55 |
57 | Forschungszentrum Telekom. Wien (FTW) | 16 | 0.47 | 16 | 500 | 2.01 |
60 | DENSO Corporation | 16 | 0.47 | 8 | 9 | 0.04 |
61 | NXP Semiconductors | 16 | 0.47 | 4 | 30 | 0.12 |
64 | Renault | 15 | 0.44 | 20 | 46 | 0.18 |
81 | Ford Motor Company | 13 | 0.38 | 33 | 49 | 0.20 |
93 | Huawei Technologies Co., Ltd. | 12 | 0.35 | 18 | 89 | 0.36 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano Domínguez, J.M.; Mateo Sanguino, T.J. Review on V2X, I2X, and P2X Communications and Their Applications: A Comprehensive Analysis over Time. Sensors 2019, 19, 2756. https://doi.org/10.3390/s19122756
Lozano Domínguez JM, Mateo Sanguino TJ. Review on V2X, I2X, and P2X Communications and Their Applications: A Comprehensive Analysis over Time. Sensors. 2019; 19(12):2756. https://doi.org/10.3390/s19122756
Chicago/Turabian StyleLozano Domínguez, José Manuel, and Tomás Jesús Mateo Sanguino. 2019. "Review on V2X, I2X, and P2X Communications and Their Applications: A Comprehensive Analysis over Time" Sensors 19, no. 12: 2756. https://doi.org/10.3390/s19122756
APA StyleLozano Domínguez, J. M., & Mateo Sanguino, T. J. (2019). Review on V2X, I2X, and P2X Communications and Their Applications: A Comprehensive Analysis over Time. Sensors, 19(12), 2756. https://doi.org/10.3390/s19122756