Monitoring of Heart Rate from Photoplethysmographic Signals Using a Samsung Galaxy Note8 in Underwater Environments
Abstract
:1. Introduction
2. Materials
2.1. Measurement Devices
2.2. Data Acquisition
3. Method
3.1. Data Processing
3.2. PPG Signal Extraction from RGB Images
3.3. Signal Quality Index (SQI) and Heart Rate Calculation and from the PPG Signal
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Heath Organization (WHO). Cardiovascular Diseases (CVDs). Available online: https://www.who.int/cardiovascular_diseases/en/ (accessed on 22 September 2018).
- Members, W.G.; Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M. Heart disease and stroke statistics—2017 update: A report from the American Heart Association. Circulation 2017, 135, e146. [Google Scholar]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; de Ferranti, S.; Despres, J.P.; Fullerton, H.J.; Howard, V.J.; et al. Heart disease and stroke statistics—2015 update: A report from the American Heart Association. Circulation 2015, 131, e29–e322. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.W.; Cho, C.H.; Tabei, F.; Le-Anh, D.; Esa, N.; McManus, D.D.; Chon, K.H. Motion and Noise Artifact-Resilient Atrial Fibrillation Detection using a Smartphone. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Sardana, M.; Saczynski, J.; Esa, N.; Floyd, K.; Chon, K.; Chong, J.W.; McManus, D. Performance and usability of a novel smartphone application for atrial fibrillation detection in an ambulatory population referred for cardiac monitoring. J. Am. Coll. Cardiol. 2016, 67, 844. [Google Scholar] [CrossRef]
- Askarian, B.; Tabei, F.; Askarian, A.; Chong, J.W. An affordable and easy-to-use diagnostic method for keratoconus detection using a smartphone. In Proceedings of the Medical Imaging 2018: Computer-Aided Diagnosis, Houston, TX, USA, 12–15 February 2018; p. 1057512. [Google Scholar]
- Tabei, F.; Kumar, R.; Phan, T.N.; McManus, D.D.; Chong, J.W. A Novel Personalized Motion and Noise Artifact (MNA) Detection Method for Smartphone Photoplethysmograph (PPG) Signals. IEEE Access 2018, 6, 60498–60512. [Google Scholar] [CrossRef]
- Safavi, A.A.; Keshavarz-Haddad, A.; Khoubani, S.; Mosharraf-Dehkordi, S.; Dehghani-Pilehvarani, A.; Tabei, F.S. A remote elderly monitoring system with localizing based on Wireless Sensor Network. In Proceedings of the 2010 International Conference on Computer Design and Applications (ICCDA), Qinhuangdao, China, 25–27 June 2010. [Google Scholar]
- Bazgir, O.; Habibi, S.A.H.; Palma, L.; Pierleoni, P.; Nafees, S. A Classification System for Assessment and Home Monitoring of Tremor in Patients with Parkinson’s Disease. J. Med. Signals Sens. 2018, 8, 65. [Google Scholar] [CrossRef]
- Seo, S.E.; Tabei, F.; Park, S.J.; Askarian, B.; Kim, K.H.; Moallem, G.; Chong, J.W.; Kwon, O.S. Smartphone with Optical, Physical, and Electrochemical Nanobiosensors. J. Ind. Eng. Chem. 2019, in press. [Google Scholar] [CrossRef]
- Pietilä, J.; Mehrang, S.; Tolonen, J.; Helander, E.; Jimison, H.; Pavel, M.; Korhonen, I. Evaluation of the accuracy and reliability for photoplethysmography based heart rate and beat-to-beat detection during daily activities. In EMBEC & NBC 2017; Springer: Berlin, Germany, 2017; pp. 145–148. [Google Scholar]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1. [Google Scholar] [CrossRef]
- Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable photoplethysmographic sensors—Past and present. Electronics 2014, 3, 282–302. [Google Scholar] [CrossRef]
- Pamula, V.R.; Valero-Sarmiento, J.M.; Yan, L.; Bozkurt, A.; Van Hoof, C.; Van Helleputte, N.; Yazicioglu, R.F.; Verhelst, M. A 172 μW Compressively Sampled Photoplethysmographic (PPG) Readout ASIC With Heart Rate Estimation Directly From Compressively Sampled Data. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 487–496. [Google Scholar] [CrossRef]
- Challoner, A.V.J. Photoelectric plethysmography for estimating cutaneous blood flow. Non-Invasive Physiol. Meas. 1979, 1, 125–151. [Google Scholar]
- Phan, D.; Siong, L.Y.; Pathirana, P.N.; Seneviratne, A. Smartwatch: Performance evaluation for long-term heart rate monitoring. In Proceedings of the 2015 International Symposium on Bioelectronics and Bioinformatics (ISBB), Beijing, China, 14–17 October 2015; pp. 144–147. [Google Scholar]
- Wijaya, R.; Setijadi, A.; Mengko, T.L.; Mengko, R.K. Heart rate data collecting using smart watch. In Proceedings of the 2014 IEEE 4th International Conference on System Engineering and Technology (ICSET), Bandung, Indonesia, 24–25 November 2014; pp. 1–3. [Google Scholar]
- Elgendi, M. On the analysis of fingertip photoplethysmogram signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Pretty, C.G.; Amies, A.C.; Elliott, R.; Shaw, G.M.; Chase, J.G. Investigating the effects of temperature on photoplethysmography. IFAC-Pap. 2015, 48, 360–365. [Google Scholar] [CrossRef]
- Breskovic, T.; Uglesic, L.; Zubin, P.; Kuch, B.; Kraljevic, J.; Zanchi, J.; Ljubkovic, M.; Sieber, A.; Dujic, Z. Cardiovascular changes during underwater static and dynamic breath-hold dives in trained divers. J. Appl. Physiol. 2011, 111, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Reyes, B.A.; Posada-Quintero, H.F.; Bales, J.R.; Clement, A.L.; Pins, G.D.; Swiston, A.; Riistama, J.; Florian, J.P.; Shykoff, B.; Qin, M. Novel electrodes for underwater ECG monitoring. IEEE Trans. Biomed. Eng. 2014, 61, 1863–1876. [Google Scholar] [CrossRef] [PubMed]
- Gregson, W.; Black, M.A.; Jones, H.; Milson, J.; Morton, J.; Dawson, B.; Atkinson, G.; Green, D.J. Influence of cold water immersion on limb and cutaneous blood flow at rest. Am. J. Sports Med. 2011, 39, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- Schipke, J.; Pelzer, M. Effect of immersion, submersion, and scuba diving on heart rate variability. Br. J. Sports Med. 2001, 35, 174–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvers, W.M.; Dolny, D.G. Comparison and reproducibility of sEMG during manual muscle testing on land and in water. J. Electromyogr. Kinesiol. 2011, 21, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Rainoldi, A.; Cescon, C.; Bottin, A.; Casale, R.; Caruso, I. Surface EMG alterations induced by underwater recording. J. Electromyogr. Kinesiol. 2004, 14, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Masumoto, K.; Takasugi, S.-I.; Hotta, N.; Fujishima, K.; Iwamoto, Y. A comparison of muscle activity and heart rate response during backward and forward walking on an underwater treadmill. Gait Posture 2007, 25, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.E.; Crandall, C.G. Effect of thermal stress on cardiac function. Exerc. Sport Sci. Rev. 2011, 39, 12. [Google Scholar] [CrossRef] [PubMed]
- White, G.E.; Rhind, S.G.; Wells, G.D. The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise. Eur. J. Appl. Physiol. 2014, 114, 2353–2367. [Google Scholar] [CrossRef] [PubMed]
- Barcroft, J.; Verzár, F. The effect of exposure to cold on the pulse rate and respiration of man. J. Physiol. 1931, 71, 373–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Integrated Photoplethysmogram and Electrocardiogram Bio-Sensor Module For Mobile Health. Available online: http://www.farnell.com/datasheets/2552940.pdf (accessed on 13 November 2018).
- Samsung Galaxy Note8. Available online: https://www.samsung.com/global/galaxy/galaxy-note8/specs/ (accessed on 21 September 2018).
- NeXus-10 MKII. Available online: https://www.mindmedia.com/en/products/nexus-10-mkii/ (accessed on 27 October 2018).
- FLUKE SPOT Light Functional Tester. Available online: https://www.flukebiomedical.com/products/biomedical-test-equipment/patient-monitor-simulators/prosim-spot-light-spo2-pulse-oximeter-analyzer (accessed on 16 April 2019).
- MathWorks, MATLAB 2017b. Available online: https://www.mathworks.com/products/new_products/release2017b.html (accessed on 21 September 2018).
- MOBIZEN. Available online: https://www.mobizen.com/?locale=en (accessed on 27 March 2019).
- Mann, S.; Picard, R.W. Virtual bellows: Constructing high quality stills from video. In Proceedings of the 1st International Conference on Image Processing, Austin, TX, USA, 13–16 November 1994; pp. 363–367. [Google Scholar]
- Szeliski, R. Image alignment and stitching: A tutorial. Found. Trends® Comput. Graph. Vis. 2007, 2, 1–104. [Google Scholar] [CrossRef]
- Zhao, M.; Bu, J.; Chen, C. Robust background subtraction in HSV color space. In Proceedings of the Convergence of Information Technologies and Communication, Boston, MA, USA, 29 July–1 August 2002. [Google Scholar]
- Delgado-Gonzalo, R.; Parak, J.; Tarniceriu, A.; Renevey, P.; Bertschi, M.; Korhonen, I. Evaluation of accuracy and reliability of PulseOn optical heart rate monitoring device. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 430–433. [Google Scholar]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Cardiac Monitor Guidance. 1998. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cardiac-monitor-guidance-including-cardiotachometer-and-rate-alarm-guidance-industry#11_1 (accessed on 13 November 2018).
- National Oceanic and Atmospheric Administration (NOAA), National Center For Environmental Information. Available online: https://www.nodc.noaa.gov/dsdt/cwtg/wgof.html (accessed on 21 January 2019).
Dry Environment | Underwater Environment | |
---|---|---|
Mean ± STD | Mean ± STD | |
Time (s) | 10 ± 2.7 | 20 ± 3.4 |
Volunteer | Dry Environment | Underwater Environment | |||||||
---|---|---|---|---|---|---|---|---|---|
Gender & Age | NeXus Heart Rate (bpm) | Smartphone Heart Rate (bpm) | Amplitude Value (au) | SNR (dB) | NeXus Heart Rate (bpm) | Samsung Heart Rate (bpm) | Amplitude Value (au) | SNR (dB) | |
1 | F 30 | 83 | 84 | 0.358 | 12.5 | 94 | 100 | 0.238 | 4.3 |
2 | M 32 | 76 | 76 | 0.356 | 12.9 | 77 | 84 | 0.204 | 4.2 |
3 | M 23 | 72 | 72 | 0.352 | 12.1 | 70 | 74 | 0.189 | 4.1 |
4 | F 37 | 95 | 94 | 0.322 | 11.8 | 88 | 92 | 0.184 | 5.2 |
5 | M 26 | 83 | 83 | 0.428 | 12.8 | 92 | 85 | 0.236 | 5.5 |
6 | M 29 | 71 | 72 | 0.383 | 12.6 | 68 | 73 | 0.241 | 5.3 |
7 | F 45 | 64 | 64 | 0.386 | 11.7 | 70 | 66 | 0.226 | 5.6 |
8 | M 27 | 77 | 78 | 0.327 | 12.1 | 70 | 73 | 0.177 | 4.2 |
9 | M 33 | 76 | 76 | 0.405 | 13.2 | 75 | 71 | 0.238 | 4.4 |
10 | M 26 | 63 | 63 | 0.323 | 13.1 | 64 | 68 | 0.178 | 4.2 |
11 | M 38 | 80 | 81 | 0.392 | 12.8 | 77 | 77 | 0.192 | 4.4 |
12 | M 25 | 63 | 63 | 0.391 | 13.8 | 69 | 65 | 0.187 | 4.6 |
13 | M 27 | 73 | 74 | 0.411 | 11.4 | 74 | 68 | 0.164 | 4.3 |
14 | F 72 | 92 | 92 | 0.315 | 14.1 | 96 | 91 | 0.168 | 4.8 |
15 | F 19 | 76 | 76 | 0.364 | 14.3 | 78 | 84 | 0.192 | 5.5 |
16 | F 21 | 65 | 65 | 0.292 | 14.5 | 63 | 69 | 0.115 | 5.1 |
17 | F 23 | 75 | 76 | 0.341 | 13.2 | 76 | 72 | 0.205 | 4.2 |
18 | F 22 | 74 | 74 | 0.313 | 12.9 | 72 | 80 | 0.215 | 4.4 |
19 | M 20 | 68 | 69 | 0.373 | 13.2 | 70 | 77 | 0.178 | 4.2 |
20 | M 19 | 86 | 86 | 0.364 | 13.1 | 85 | 94 | 0.113 | 4.5 |
Mean ± STD | 75.9 ± 9 | 75.95 ± 8.9 | 0.39 ± 0.14 | 12.8 ± 1.4 | 75.4 ± 9 | 80.2 ± 10.2 | 0.2 ± 0.1 | 4.9 ± 0.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Askarian, B.; Jung, K.; Chong, J.W. Monitoring of Heart Rate from Photoplethysmographic Signals Using a Samsung Galaxy Note8 in Underwater Environments. Sensors 2019, 19, 2846. https://doi.org/10.3390/s19132846
Askarian B, Jung K, Chong JW. Monitoring of Heart Rate from Photoplethysmographic Signals Using a Samsung Galaxy Note8 in Underwater Environments. Sensors. 2019; 19(13):2846. https://doi.org/10.3390/s19132846
Chicago/Turabian StyleAskarian, Behnam, Kwanghee Jung, and Jo Woon Chong. 2019. "Monitoring of Heart Rate from Photoplethysmographic Signals Using a Samsung Galaxy Note8 in Underwater Environments" Sensors 19, no. 13: 2846. https://doi.org/10.3390/s19132846
APA StyleAskarian, B., Jung, K., & Chong, J. W. (2019). Monitoring of Heart Rate from Photoplethysmographic Signals Using a Samsung Galaxy Note8 in Underwater Environments. Sensors, 19(13), 2846. https://doi.org/10.3390/s19132846