Review of Dissolved Oxygen Detection Technology: From Laboratory Analysis to Online Intelligent Detection
Abstract
:1. Introduction
2. Dissolved Oxygen Detection Technologies
2.1. Determination of Dissolved Oxygen by Iodometric Titration
2.1.1. Iodimetry
2.1.2. Improvement Methods of Iodimetry
2.2. Electrochemical Dissolved Oxygen Sensor
2.2.1. Polarographic Dissolved Oxygen Sensor
2.2.2. Other Electrochemical Dissolved Oxygen Sensors
2.2.3. New Solid-State Dissolved Oxygen Sensor
2.3. Optical Dissolved Oxygen Sensor
3. Intelligent Dissolved Oxygen Sensor Technologies
3.1. Intelligent Signal Transmission
3.2. Digital Signal Processing
3.3. Adaptive Real-Time Compensation Correction
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Tran-Ngoc, K.T.; Dinh, N.T.; Nguyen, T.H.; Roem, A.J.; Schrama, J.W.; Verreth, J.A. Interaction between dissolved oxygen concentration and diet composition on growth, digestibility and intestinal health of Nile tilapia (Oreochromis niloticus). Aquaculture 2016, 462, 101–108. [Google Scholar] [CrossRef]
- Wu, S.; Wu, S.; Yi, Z.; Zeng, F.; Wu, W.; Qiao, Y.; Tian, Y. Hydrogel-based fluorescent dual pH and oxygen sensors loaded in 96-well plates for high-throughput cell metabolism studies. Sensors 2018, 18, 564. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, Y.; Jin, Q.; Liu, Y. Measurement of dissolved oxygen. Chem. Sens. 2011, 31, 39–43. [Google Scholar] [CrossRef]
- Chong, S.; Aziz, A.; Harun, S. Fibre optic sensors for selected wastewater characteristics. Sensors 2013, 13, 8640–8668. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.; Zhang, Y.; Zhou, Y.; Shi, K.; Liu, X.; Qin, B. The potential applications of real-time monitoring of water quality in a large shallow lake (Lake Taihu, China) using a chromophoric dissolved organic matter fluorescence sensor. Sensors 2014, 14, 11580–11594. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xu, C.; Liu, C.; Qin, Y.; Cai, P. Characters of hypoxia area off Yangtze River Estuary and its influence. Mar. Sci. Bull. 2012, 31, 588–593. [Google Scholar] [CrossRef]
- Boyd, C.E.; Torrans, E.L.; Tucker, C.S. Dissolved oxygen and aeration in ictalurid catfish aquaculture. J. World Aquac. Soc. 2018, 49, 7–70. [Google Scholar] [CrossRef]
- Solstorm, D.; Oldham, T.; Solstorm, F.; Klebert, P.; Stien, L.H.; Vågseth, T.; Oppedal, F. Dissolved oxygen variability in a commercial sea-cage exposes farmed Atlantic salmon to growth limiting conditions. Aquaculture 2018, 486, 122–129. [Google Scholar] [CrossRef]
- Babikian, J.; Nasser, N.; Monzer, S.; Saoud, I.P. Survival and respiration of marbled rabbitfish (S iganus rivulatus) fingerlings at various oxygen tensions. Aquac. Res. 2017, 48, 4219–4227. [Google Scholar] [CrossRef]
- Null, S.E.; Mouzon, N.R.; Elmore, L.R. Dissolved oxygen, stream temperature, and fish habitat response to environmental water purchases. J. Environ. Manag. 2017, 197, 559–570. [Google Scholar] [CrossRef]
- Abegaz, B.W.; Datta, T.; Mahajan, S.M. Sensor technologies for the energy-water nexus—A review. Appl. Energy 2018, 210, 451–466. [Google Scholar] [CrossRef]
- Carpenter, J.H. The accuracy of the winkler method for dissolved oxygen analysis. Limnol. Oceanogr. 1965, 10, 135–140. [Google Scholar] [CrossRef]
- Tai, H.; Yang, Y.; Liu, S. A review of measurement methods of dissolved oxygen in water. In Proceedings of the International Conference on Computer and Computing Technologies in Agriculture, Beijing, China, 29–30 October 2011; pp. 569–576. [Google Scholar]
- Zhao, Y.; Li, S.; Li, M.F. The research about detection of dissolved oxygen in water based on C8051F040. In Proceedings of the 2009 International Conference on Information Engineering and Computer Science, Wuhan, China, 19–20 December 2009. [Google Scholar]
- Wilkin, R.T.; Mcneil, M.S.; Adair, C.J.; Wilson, J.T. Field measurement of dissolved oxygen: A comparison of methods. Groundw. Monit. Remediat. 2001, 21, 124–132. [Google Scholar] [CrossRef]
- Trivellin, N.; Barbisan, D.; Badocco, D.; Pastore, P.; Meneghesso, G.; Meneghini, M.; Zanoni, E.; Belgioioso, G.; Cenedese, A. Study and development of a fluorescence based sensor system for monitoring oxygen in wine production: The WOW project. Sensors 2018, 18, 1130. [Google Scholar] [CrossRef] [PubMed]
- Shehata, N.; Azab, M.; Kandas, I.; Meehan, K. Nano-enriched and autonomous sensing framework for dissolved oxygen. Sensors 2015, 15, 20193–20203. [Google Scholar] [CrossRef] [PubMed]
- Song, D.H.; Kim, H.D.; Kim, K.C. Dissolved oxygen concentration field measurement in micro-scale water flows using PtOEP/PS film sensor. Opt. Lasers Eng. 2012, 50, 74–81. [Google Scholar] [CrossRef]
- Hsu, H.; Du, F.; Fang, Q.; Selvaganapathy, R.; Xu, C.Q. Development of a Miniaturized Dissolved Oxygen Sensor with Anti-Biofouling Coating for Water Monitoring. In Meeting Abstracts; The Electrochemical Society: Orlando, FL, USA, 2014; p. 1495. [Google Scholar]
- Wang, J.; Bian, C.; Tong, J.; Sun, J.; Li, Y.; Hong, W.; Xia, S. Modification of Graphene on Ultramicroelectrode Array and Its Application in Detection of Dissolved Oxygen. Sensors 2015, 15, 382–393. [Google Scholar] [CrossRef]
- Staudinger, C.; Strobl, M.; Fischer, J.P.; Thar, R.; Mayr, T.; Aigner, D.; Fritzsche, E. A versatile optode system for oxygen, carbon dioxide, and pH measurements in seawater with integrated battery and logger. Limnol. Oceanogr. Methods 2018, 16, 459–473. [Google Scholar] [CrossRef]
- Larsen, M.; Lehner, P.; Borisov, S.M.; Klimant, I.; Fischer, J.P.; Stewart, F.J.; Glud, R.N. In situ quantification of ultra-low O2 concentrations in oxygen minimum zones: Application of novel optodes. Limnol. Oceanogr. Methods 2016, 14, 784–800. [Google Scholar] [CrossRef]
- Kim, C.S.; Park, J.; He, X. An intelligent dissolved oxygen microsensor system with electrochemically actuated fluidics. In Proceedings of the IEEE Sensors, Vienna, Austria, 24–27 October 2004; pp. 170–173. [Google Scholar]
- Wang, Q.; Zhang, J.M.; Li, S. Minreview: Recent advances in the development of gaseous and dissolved oxygen sensors. Instrum. Sci. Technol. 2019, 47, 19–50. [Google Scholar] [CrossRef]
- Wang, X.D.; Wolfbeis, O.S. Optical methods for sensing and imaging oxygen: Materials, spectroscopies and applications. Chem. Soc. Rev. 2014, 43, 3666–3761. [Google Scholar] [CrossRef] [PubMed]
- Xia, X. Determination of dissolved oxygen in water by iodometry. China High Technol. Enterp. 2014, 36, 30–31. [Google Scholar] [CrossRef]
- Novič, M.; Pihlar, B.; Dular, M. Use of flow injection analysis based on iodometry for automation of dissolved oxygen (Winkler method) and chemical oxygen demand (dichromate method) determinations. Fresenius’ Z. Anal. Chem. 1988, 332, 750–755. [Google Scholar] [CrossRef]
- Helm, I.; Jalukse, L.; Vilbaste, M.; Leito, I. Micro-Winkler titration method for dissolved oxygen concentration measurement. Anal. Chim. Acta 2009, 648, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Helm, I.; Jalukse, L.; Leito, I. A highly accurate method for determination of dissolved oxygen: Gravimetric Winkler method. Anal. Chim. Acta 2012, 741, 21–31. [Google Scholar] [CrossRef]
- Shriwastav, A.; Sudarsan, G.; Bose, P.; Tare, V. Modification of Winkler’s method for determination of dissolved oxygen concentration in small sample volumes. Anal. Methods 2010, 2, 1618–1622. [Google Scholar] [CrossRef]
- Shriwastav, A.; Sudarsan, G.; Bose, P.; Tare, V. A modified Winkler’s method for determination of dissolved oxygen concentration in water: Dependence of method accuracy on sample volume. Measurement 2017, 106, 190–195. [Google Scholar] [CrossRef]
- Li, H. Feasibility test report on determination of dissolved oxygen in water by colorimetric method. Mar. Sci. 1992, 1, 69–70. [Google Scholar] [CrossRef]
- Wang, J.B.; Quan, R.; Wen, D.Z.; Bai, L.; Li, S.H.; Cui, J.Z. Study on rapid determination method of dissolved oxygen in water. Environ. Eng. 2002, 20, 58–60. [Google Scholar] [CrossRef]
- Han, L. Research on determining dissolved oxygen with visual colorimetry of carbon tetrachloride. Heilongjiang Environ. J. 2011, 3, 37–39. [Google Scholar]
- Sastry, G.S.; Hamm, R.E.; Pool, K.H. Spectrophotometric determination of dissolved oxygen in water. Anal. Chem. 1969, 41, 857–858. [Google Scholar] [CrossRef]
- Hu, X. Determination of dissolved oxygen in water by spectrophotometry. Arid Environ. Monit. 1998, 3, 181–182. [Google Scholar]
- Labasque, T.; Chaumery, C.; Aminot, A.; Kergoat, G. Spectrophotometric Winkler determination of dissolved oxygen: Re-examination of critical factors and reliability. Mar. Chem. 2004, 88, 53–60. [Google Scholar] [CrossRef]
- Gao, H. Determination of DO in Environmental water by primary-secondary wavelength spectrophotometry. Petrochem. Technol. 1994, 8, 540–543. [Google Scholar] [CrossRef]
- Roland, F.; Caraco, N.F.; Cole, J.J.; del Giorgio, P. Rapid and precise determination of dissolved oxygen by spectrophotometry: Evaluation of interference from color and turbidity. Limnol. Oceanogr. 1999, 44, 1148–1154. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Cheng, F.; Zhang, Y.; Chen, L. Iodine-mediated etching of gold nanorods for plasmonic sensing of dissolved oxygen and salt iodine. Analyst 2016, 141, 2955–2961. [Google Scholar] [CrossRef]
- Pai, S.C.; Gong, G.C.; Liu, K.K. Determination of dissolved oxygen in seawater by direct spectrophotometry of total iodine. Mar. Chem. 1993, 41, 343–351. [Google Scholar] [CrossRef]
- Sakai, T.; Piao, S.; Teshima, N.; Kuroishi, T.; Grudpan, K. Flow injection system with in-line Winkler’s procedure using 16-way valve and spectrofluorimetric determination of dissolved oxygen in environmental waters. Talanta 2004, 63, 893–898. [Google Scholar] [CrossRef]
- Wong, G.T.F.; Li, K.Y. Winkler’s method overestimates dissolved oxygen in seawater: Iodate interference and its oceanographic implications. Mar. Chem. 2009, 115, 86–91. [Google Scholar] [CrossRef]
- Wong, G.T.F.; Wu, Y.C.; Li, K.Y. Winkler’s method overestimates dissolved oxygen in natural waters: Hydrogen peroxide interference and its implications. Mar. Chem. 2010, 122, 83–90. [Google Scholar] [CrossRef]
- Wong, G.T. Removal of nitrite interference in the Winkler determination of dissolved oxygen in seawater. Mar. Chem. 2012, 130, 28–32. [Google Scholar] [CrossRef]
- Feng, J.; Chen, J. Study on the Decomposition Ability of NaN3 to NO2-. Urban Environ. Urban Ecol. 2002, 5, 61–62. [Google Scholar]
- Santos, L.S.; Landers, R.; Gushikem, Y. Application of manganese (II) phthalocyanine synthesized in situ in the SiO2/SnO2 mixed oxide matrix for determination of dissolved oxygen by electrochemical techniques. Talanta 2011, 85, 1213–1216. [Google Scholar] [CrossRef]
- Silva, E.L.; Bastos, A.C.; Neto, M.A.; Silva, R.F.; Zheludkevich, M.L.; Ferreira, M.G.S. Boron doped nanocrystalline diamond microelectrodes for the detection of Zn2+ and dissolved O2. Electrochim. Acta 2012, 76, 487–494. [Google Scholar] [CrossRef]
- Silva, S.M.; Aguiar, L.F.; Carvalho, R.M.; Tanaka, A.A.; Damos, F.S.; Luz, R.C. A glassy carbon electrode modified with an iron N4-macrocycle and reduced graphene oxide for voltammetric sensing of dissolved oxygen. Microchim. Acta 2016, 183, 1251–1259. [Google Scholar] [CrossRef]
- Han, G.; Chen, G.; Sun, Y.; Wang, L. Research progress of current electrochemical sensors. Technol. Innov. Appl. 2017, 23, 195–196. [Google Scholar]
- Zhang, D.; Fang, Y.; Miao, Z.; Ma, M.; Chen, Q. Electrochemical determination of dissolved oxygen based on three dimensional electrosynthesis of silver nanodendrites electrode. J. Appl. Electrochem. 2014, 44, 419–425. [Google Scholar] [CrossRef]
- Olean-Oliveira, A.; Teixeira, M.F. Development of a nanocomposite chemiresistor sensor based on π-conjugated azo polymer and graphene blend for detection of dissolved oxygen. Sens. Actuators B Chem. 2018, 271, 353–357. [Google Scholar] [CrossRef]
- Lin, M.S.; Leu, H.J.; Lai, C.H. Development of Vitamin B12 based disposable sensor for dissolved oxygen. Anal. Chim. Acta 2006, 561, 164–170. [Google Scholar] [CrossRef]
- Damos, F.S.; Luz, R.C.; Tanaka, A.A.; Kubota, L.T. Dissolved oxygen amperometric sensor based on layer-by-layer assembly using host–guest supramolecular interactions. Anal. Chim. Acta 2010, 664, 144–150. [Google Scholar] [CrossRef]
- Martin, C.S.; Dadamos, T.R.; Teixeira, M.F. Development of an electrochemical sensor for determination of dissolved oxygen by nickel–salen polymeric film modified electrode. Sens. Actuators B Chem. 2012, 175, 111–117. [Google Scholar] [CrossRef]
- Hsu, L.; Selvaganapathy, P.R.; Brash, J.; Fang, Q.; Xu, C.Q.; Deen, M.J.; Chen, H. Development of a low-cost hemin-based dissolved oxygen sensor with anti-biofouling coating for water monitoring. IEEE Sens. J. 2014, 14, 3400–3407. [Google Scholar] [CrossRef]
- Silva, E.; Bastos, A.C.; Neto, M.; Fernandes, A.J.; Silva, R.; Ferreira, M.G.S.; Oliveira, F. New fluorinated diamond microelectrodes for localized detection of dissolved oxygen. Sens. Actuators B Chem. 2014, 204, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Xin, L. Study on the Detection Method of Trace Dissolved Oxygen by Electrochemical Formula; Beijing University of Chemical Technology: Beijing, China, 2014. [Google Scholar]
- Fu, L.; Zheng, Y.; Fu, Z.; Wang, A.; Cai, W. Dissolved oxygen detection by galvanic displacement-induced graphene/silver nanocomposite. Bull. Mater. Sci. 2015, 38, 611–616. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.O.; Ngamchuea, K.; Batchelor-McAuley, C.; Compton, R.G. Electrochemical measurement of the dissolved oxygen concentration in water in the absence of deliberately added supporting electrolyte. Electroanalysis 2017, 29, 1418–1425. [Google Scholar] [CrossRef]
- Wiranto, G.; Widodo, S.; Hermida, I.; Manurung, R.V.; Sugandi, G.; Arifin, Z. Design and Fabrication of Thick Film Dissolved Oxygen Sensor Based on RuO2 Working Electrodes for Water Quality Monitoring. Mater. Sci. Forum 2018, 917, 59–63. [Google Scholar] [CrossRef]
- Dadamos, T.R.; Martin, C.S.; Teixeira, M.F. Development of Nanostructured Electrochemical Sensor Based on Polymer Film Nickel-Salen for Determination of Dissolved Oxygen. Procedia Eng. 2011, 25, 1057–1060. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Lv, B.; Zhou, Z.; Hou, X.; Xiao, D. An Oxygen Sensor Based on Ru(bpy)2+3/Agar Gel Modified Electrode for the Determination Dissolved Oxygen in Organic Solvents. Sens. Lett. 2006, 4, 455–459. [Google Scholar] [CrossRef]
- Ye, R.; Huang, L.; Qiu, B.; Song, Z.; Lin, Z.; Chen, G. Cathodic electrochemiluminescent behavior of luminol at nafion–nano-TiO2 modified glassy carbon electrode. Luminescence 2011, 26, 531–535. [Google Scholar] [CrossRef]
- Zheng, L.; Chi, Y.; Shu, Q.; Dong, Y.; Zhang, L.; Chen, G. Electrochemiluminescent reaction between Ru (bpy)32+ and oxygen in nafion film. J. Phys. Chem. C 2009, 113, 20316–20321. [Google Scholar] [CrossRef]
- Zheng, R.J.; Fang, Y.M.; Qin, S.F.; Song, J.; Wu, A.H.; Sun, J.J. A dissolved oxygen sensor based on hot electron induced cathodic electrochemiluminescence at a disposable CdS modified screen-printed carbon electrode. Sens. Actuators B Chem. 2011, 157, 488–493. [Google Scholar] [CrossRef]
- Zhao, X.H.; Yu, X.S. Discussion on some problems of polarographic on-line dissolved oxygen analyzer. Control Instrum. Chem. Ind. 2007, 34, 94–96. [Google Scholar] [CrossRef]
- Luo, J.; Dziubla, T.; Eitel, R. A low temperature co-fired ceramic based microfluidic clark-type oxygen sensor for real-time oxygen sensing. Sens. Actuators B Chem. 2017, 240, 392–397. [Google Scholar] [CrossRef]
- Janzen, C.; Murphy, D.; Larson, N. Getting more mileage out of dissolved oxygen sensors in long-term moored applications. In Proceedings of the OCEANS, Vancouver, BC, Canada, 29 September–4 October 2007; pp. 1–5. [Google Scholar]
- Huang, G.; Ji, Z.; Liu, Q. A Method to Improve the Response Speed of the Measurement of Dissolved Oxygen. Chin. J. Sens. Actuators 2016, 11, 1655–1658. [Google Scholar] [CrossRef]
- Feng, J.; Yang, K.; Wang, Y. Differential pulse polarographic properties of coated oxygen electrodes. J. Instrum. Anal. 1984, 2, 63–66. [Google Scholar]
- Jin, S.; Yu, X.; Jiang, G.; Zhu, B. Study of theoretical model for determination of mass transfer process of dissolved oxygen electrode by polarography. J. Chem. Ind. Eng. 1982, 3, 210–217. [Google Scholar]
- Chokrung, S.; Thanapatay, D. Development of pulse biased polarographic dissolved oxygen meter. In Proceedings of the 47th Kasetsart University Annual Conference, Bangkok, Thailand, 17–20 March 2009; pp. 590–597. [Google Scholar]
- Qi, X.; Shu, D.; Qiu, F.; Chen, J. Study of digital dissolved oxygen analytical sensor of ppb-level. IEEE Sens. J. 2013, 13, 4279–4286. [Google Scholar] [CrossRef]
- Yu, J. Introduction of three methods for determination of dissolved oxygen in water. Curr. Fish. 2017, 2, 78–79. [Google Scholar]
- Zhao, S.; Liu, H.; Ding, W.; Tang, Y.; Li, Y. The development and experiment of aeration control system in pond. J. Nanjing Agric. Univ. 2015, 38, 682–688. [Google Scholar] [CrossRef]
- Dong, H.P.; Zhang, W.; Hao, Y.L. Galvanic Cell Oxygen Sensors with Active Copper Anode. Instrum. Tech. Sens. 2007, 36, 1–3. [Google Scholar] [CrossRef]
- Zhang, Y.; Angelidaki, I. Energy recovery from waste streams with microbial fuel cell (MFC)-based technologies. In Kgs. Lyngby; DTU Environment: Lyngby, Denmark, 2012; p. 65. [Google Scholar]
- Zhang, Y.; Angelidaki, I. A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC). Biosens. Bioelectron. 2012, 38, 189–194. [Google Scholar] [CrossRef]
- Yu, J.; Yang, H.; Yang, S.; Chen, Y. Determination of DO in water by conductometric titration. Chin. J. Health Lab. Technol. 2004, 14, 24–25. [Google Scholar] [CrossRef]
- Zhang, F.; Du, H.; Yao, Q.; Dandan, F. Design of on-line measuring device for dissolved oxygen in water. Comput. Knowl. Technol. 2017, 8, 247–248. [Google Scholar] [CrossRef]
- Martınez-Máñez, R.; Soto, J.; Garcia-Breijo, E.; Gil, L.; Ibáñez, J.; Llobet, E. An “electronic tongue” design for the qualitative analysis of natural waters. Sens. Actuators B Chem. 2005, 104, 302–307. [Google Scholar] [CrossRef]
- Zhuiykova, S.; Kalantar-zadeh, K. Development of antifouling of electrochemical solid state dissolved oxygen sensors based on nanostructured Cu0.4Ru3.4O7 + RuO2 sensing electrodes. Electrochim. Acta 2012, 73, 105–111. [Google Scholar] [CrossRef]
- Martínez-Máñez, R.; Soto, J.; Lizondo-Sabater, J.; García-Breijo, E.; Gil, L.; Ibáñez, J.; Alvarez, S. New potentiomentric dissolved oxygen sensors in thick film technology. Sens. Actuators B Chem. 2004, 101, 295–301. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, R. Determination of dissolved oxygen in water by quasi-equilibrium method. Mod. Chem. Ind. 2014, 34, 170–173. [Google Scholar] [CrossRef]
- Peter, Z.; Andreas, W.; Gerald, U.; Jochen, K. Active Potentiometry for Dissolved Oxygen Monitoring with Platinum Electrodes. Sensors 2018, 18, 2404. [Google Scholar] [CrossRef]
- Novitski, D.M.; Kosakian, A.; Weissbach, T.; Secanell, M.; Holdcroft, S. Electrochemical reduction of dissolved oxygen in alkaline, solid polymer electrolyte films. J. Am. Chem. Soc. 2016, 138, 15465–15472. [Google Scholar] [CrossRef]
- Liu, T.; Wang, X.; Zhang, X.; Gao, X.; Li, L.; Yu, J.; Yin, X. A limiting current oxygen sensor prepared by a co-pressing and co-sintering technique. Sens. Actuators B Chem. 2018, 277, 216–223. [Google Scholar] [CrossRef]
- Shang, J.Y.; Tang, Y.H. Research progress of the dissolved oxygen sensor. Micronanoelectron. Technol. 2014, 51, 168–175. [Google Scholar] [CrossRef]
- Glasspool, W.; Atkinson, J. A screen-printed amperometric dissolved oxygen sensor utilising an immobilised electrolyte gel and membrane. Sens. Actuators B Chem. 1998, 48, 308–317. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Y.; Abruña, H.D.; Spector, J.A.; Olbricht, W.L. Micromachined dissolved oxygen sensor based on solid polymer electrolyte. Sens. Actuators B Chem. 2011, 153, 145–151. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, H.M.; Park, J.H.; Lee, S.K. Fabrication and characterization of micro dissolved oxygen sensor activated on demand using electrolysis. Sens. Actuators B Chem. 2017, 241, 923–930. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.; Li, Y.; Zhuang, Q.; Gu, J. Real-time monitoring of dissolved oxygen with inherent oxygen-sensitive centers in metal–organic frameworks. Chem. Mater. 2016, 28, 2652–2658. [Google Scholar] [CrossRef]
- Lehner, P.; Staudinger, C.; Borisov, S.M.; Klimant, I. Ultra-sensitive optical oxygen sensors for characterization of nearly anoxic systems. Nat. Commun. 2014, 5, 4460. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, L.; Luo, T.; Hong, L.; Peng, X.; Austin, R.H.; Qu, J. A platinum-porphine/poly (perfluoroether) film oxygen tension sensor for noninvasive local monitoring of cellular oxygen metabolism using phosphorescence lifetime imaging. Sens. Actuators B Chem. 2018, 269, 88–95. [Google Scholar] [CrossRef]
- Müller, B.J.; Burger, T.; Borisov, S.M.; Klimant, I. High performance optical trace oxygen sensors based on NIR-emitting benzoporphyrins covalently coupled to silicone matrixes. Sens. Actuators B Chem. 2015, 216, 527–534. [Google Scholar] [CrossRef]
- Camas-Anzueto, J.L.; Gómez-Valdéz, J.A.; Meza-Gordillo, R.; Pérez-Patricio, M.; de León, H.H.; León-Orozco, V. Sensitive layer based on Lophine and calcium hydroxide for detection of dissolved oxygen in water. Measurement 2015, 68, 280–285. [Google Scholar] [CrossRef]
- Shehata, N.; Meehan, K.; Ashry, I.; Kandas, I.; Xu, Y. Lanthanide-doped ceria nanoparticles as fluorescence-quenching probes for dissolved oxygen. Sens. Actuators B Chem. 2013, 183, 179–186. [Google Scholar] [CrossRef]
- Yan, L.; Chen, Z.; Zhang, Z.; Qu, C.; Chen, L.; Shen, D. Fluorescent sensing of mercury (II) based on formation of catalytic gold nanoparticles. Analyst 2013, 138, 4280–4283. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Yu, X.; Hao, Y. Design and fabrication of a ratiometric planar optode for simultaneous imaging of pH and oxygen. Sensors 2017, 17, 1316. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Niu, C.; Zeng, G.; Wang, X.; Huang, D. Determination of Dissolved Oxygen in Water Based on Its Quenching Effect on the Fluorescent Intensity of Bis (2, 2′-bipyridine)-5-amino-1, 10-phenanthroline Ruthenium Complex. Anal. Sci. 2011, 27, 1121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, H.; Li, W.; Tian, Y.; Li, S.; Zhao, J.; Li, Y. PtOEP/PS composite particles based on fluorescent sensor for dissolved oxygen detection. Mater. Lett. 2016, 172, 12–115. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, T.; Chen, H.; Huang, D.; Chen, X. A dissolved oxygen sensor based on composite fluorinated xerogel doped with platinum porphyrin dye. Luminescence 2011, 26, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Holst, G.; Grunwald, B. Luminescence lifetime imaging with transparent oxygen optodes. Sens. Actuators B Chem. 2001, 74, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Cai, C.; Guo, F.; Ye, C.; Luo, Y.; Ye, S.; Jiang, C. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors. Nanotechnology 2018, 29, 145704. [Google Scholar] [CrossRef] [PubMed]
- Pensieri, S.; Bozzano, R.; Schiano, M.; Ntoumas, M.; Potiris, E.; Frangoulis, C.; Petihakis, G. Methods and best practice to intercompare dissolved oxygen sensors and fluorometers/turbidimeters for oceanographic applications. Sensors 2016, 16, 702. [Google Scholar] [CrossRef] [PubMed]
- Chakravorty, K.; Poole, J.A. The effect of dissolved molecular oxygen on the fluorescence of 9, 10-dimethylanthracene and 9, 10-diphenylanthracene. J. Photochem. 1984, 26, 25–31. [Google Scholar] [CrossRef]
- Välimäki, H.; Verho, J.; Kreutzer, J.; Rajan, D.K.; Ryynänen, T.; Pekkanen-Mattila, M.; Lekkala, J. Fluorimetric oxygen sensor with an efficient optical read-out for in vitro cell models. Sens. Actuators B Chem. 2017, 249, 738–746. [Google Scholar] [CrossRef]
- Jin, P.; Chu, J.; Miao, Y.; Tan, J.; Zhang, S.; Zhu, W. A NIR luminescent copolymer based on platinum porphyrin as high permeable dissolved oxygen sensor for microbioreactors. AIChE J. 2013, 59, 2743–2752. [Google Scholar] [CrossRef]
- Chen, R.; Farmery, A.D.; Obeid, A.; Hahn, C.E. A cylindrical-core fiber-optic oxygen sensor based on fluorescence quenching of a platinum complex immobilized in a polymer matrix. IEEE Sens. J. 2011, 12, 71–75. [Google Scholar] [CrossRef]
- Silva, E.B.; Pinto, P.V.F.; Chretien, J.B.; Miranda, J.I.S.; Pinho, H.A.; Timbó, Á.P.; de Freitas Guimarãres, G. Green optical dissolved oxygen sensor based on a chlorophyll–zinc complex extracted from the plant Brassica oleracea L. Appl. Opt. 2017, 56, 9951–9956. [Google Scholar] [CrossRef]
- Li, X.M.; Ruan, F.C.; Wong, K.Y. Optical characteristics of a ruthenium (II) complex immobilized in a silicone rubber film for oxygen measurement. Analyst 1993, 118, 289–292. [Google Scholar] [CrossRef]
- Choi, M.M.; Xiao, D. Single standard calibration for an optical oxygen sensor based on luminescence quenching of a ruthenium complex. Anal. Chim. Acta 2000, 403, 57–65. [Google Scholar] [CrossRef]
- Lee, Y.C.; Cheng, S.W.; Cheng, C.L.; Fang, W. Design and implementation of gas sensor array based on fluorescence quenching detection using CMOS-MEMS process. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 672–675. [Google Scholar]
- Chen, R.; Fioroni, G.; McPeak, H.; Hahn, C.E.; Farmery, A.D. Chariacteristics of carbon nanotube based nanocomposite oxygen sensing matrices. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Chen, R.; Formenti, F.; McPeak, H.; Obeid, A.N.; Hahn, C.E.; Farmery, A.D. Optimizing design for polymer fiber optic oxygen sensors. IEEE Sens. J. 2014, 14, 3358–3364. [Google Scholar] [CrossRef]
- Ge, L.; Zhu, Z.; Li, F.; Liu, S.; Wang, L.; Tang, X.; Rudolph, V. Investigation of Gas permeability in carbon nanotube (CNT)−polymer matrix membranes via modifying CNTs with functional groups/metals and controlling modification location. J. Phys. Chem. C 2011, 115, 6661–6670. [Google Scholar] [CrossRef]
- Xiong, X.; Xiao, D.; Choi, M.M. Dissolved oxygen sensor based on fluorescence quenching of oxygen-sensitive ruthenium complex immobilized on silica–Ni–P composite coating. Sens. Actuators B Chem. 2006, 117, 172–176. [Google Scholar] [CrossRef]
- Chu, C.S.; Lo, Y.L. Optical fiber dissolved oxygen sensor based on Pt (II) complex and core-shell silica nanoparticles incorporated with sol–gel matrix. Sens. Actuators B Chem. 2010, 151, 83–89. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, Z.; Li, Z.; Jiang, Y.; Wang, X.; Wong, K. Characterization of ormosil film for dissolved oxygen-sensing. Sens. Actuators B Chem. 2002, 87, 233–238. [Google Scholar] [CrossRef]
- Peng, L.; Yang, X.; Zhang, J.; Dai, L.; Ma, Z.; Peng, S. Fluorescence Detection Method of Dissolved Oxygen Based on Fiber. Chin. J. Lumin. 2014, 35, 382–386. [Google Scholar] [CrossRef]
- Noor, M.A.M.; Atan, K.N.; Witjaksono, G.; Saharudin, S. Characterization of Optical Fiber Dissolved Oxygen Sensor for aquaculture sensing and monitoring. Procedia Chem. 2016, 20, 8–11. [Google Scholar] [CrossRef]
- Pospíšilová, M.; Kuncová, G.; Trögl, J. Fiber-optic chemical sensors and fiber-optic bio-sensors. Sensors 2015, 15, 25208–25259. [Google Scholar] [CrossRef] [PubMed]
- Zolkapli, M.; Mahmud, Z.; Herman, S.H.; Abdullah, W.F.H.; Noorl, U.M.; Saharudin, S. Fluorescence characteristic of ruthenium nanoparticles as a dissolved oxygen sensing material in gas and aqueos phase. In Proceedings of the 2014 IEEE 10th International Colloquium on Signal Processing and its Applications, Kuala Lumpur, Malaysia, 7–9 March 2014; pp. 195–198. [Google Scholar]
- Eich, S.; Schmälzlin, E.; Löhmannsröben, H.G. Distributed fiber optical sensing of oxygen with optical time domain reflectometry. Sensors 2013, 13, 7170–7183. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, S.; Uttamchandani, D. Fibre optic micro-optrode for dissolved oxygen measurements. IEE Proc. Sci. Meas. Technol. 1999, 146, 123–127. [Google Scholar] [CrossRef]
- Zolkapli, M.; Saharudin, S.; Herman, S.H.; Abdullah, W.F.H. Quasi-distributed sol-gel coated fiber optic oxygen sensing probe. Opt. Fiber Technol. 2018, 41, 109–117. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, H.; Li, C.; Tian, X.; Zou, W.; Zhong, N. Plastic optical fiber dissolved oxygen sensor based on fluorescence quenching principle. Semicond. Optoelectron. 2017, 38, 26–29. [Google Scholar] [CrossRef]
- Mahmud, Z.; Herman, S.H.; Noor, U.M.; Saharudin, S. Performance characterization of optical fiber oxygen sensor in gas and aqueos phase. In Proceedings of the 2013 IEEE Student Conference on Research and Developement, Putrajaya, Malaysia, 16–17 December 2013; pp. 569–571. [Google Scholar]
- Mahmud, Z.; Noor, U.M.; Herman, S.H.; Saharudin, S. Emission performance of optical fibre dissolved oxygen sensor using various optical fibre materials and parameters. In Proceedings of the IEEE International Conference on Photonics, Kuala Lumpur, Malaysia, 2–4 September 2014. [Google Scholar]
- Zhao, T.; Lu, S.; Zhao, L.; Yao, Q.; Chen, X. Nano Sensors for Oxygen Based on Ratiometric Fluorescence. J. Instrum. Anal. 2017, 36, 288–296. [Google Scholar] [CrossRef]
- Zang, L.; Zhao, H.; Hua, J.; Qin, F.; Zheng, Y.; Zhang, Z.; Cao, W. Ratiometric dissolved oxygen sensitive indicator based on lutetium labeled hematoporphyrin monomethyl ether with balanced phosphorescence and fluorescence dual emission. Sens. Actuators B Chem. 2016, 231, 539–546. [Google Scholar] [CrossRef]
- Chu, C.S.; Chuang, C.Y. Ratiometric optical fiber dissolved oxygen sensor based on metalloporphyrin and CdSe quantum dots embedded in sol–gel matrix. J. Lumin. 2015, 167, 114–119. [Google Scholar] [CrossRef]
- Zike, J.; Xinsheng, Y.; Shikui, Z.; Yingyan, H. Ratiometric dissolved oxygen sensors based on ruthenium complex doped with silver nanoparticles. Sensors 2017, 17, 548. [Google Scholar] [CrossRef]
- Xu, X.; Yan, B. Nanoscale LnMOF-functionalized nonwoven fibers protected by a polydimethylsiloxane coating layer as a highly sensitive ratiometric oxygen sensor. J. Mater. Chem. C 2016, 4, 8514–8521. [Google Scholar] [CrossRef]
- Li, X.; Lu, X.; Luo, X.; Liu, G. Development of the fluorescence quenching dissolved oxygen sensor. Zidonghuayu Yibiao Autom. Instrum. 2013, 28, 17–20. [Google Scholar] [CrossRef]
- Ammam, M. Electrochemical and electrophoretic deposition of enzymes: Principles, differences and application in miniaturized biosensor and biofuel cell electrodes. Biosens. Bioelectron. 2014, 58, 121–131. [Google Scholar] [CrossRef]
- Grist, S.M.; Chrostowski, L.; Cheung, K.C. Optical oxygen sensors for applications in microfluidic cell culture. Sensors 2010, 10, 9286–9316. [Google Scholar] [CrossRef]
- Xiong, Y.; Tan, J.; Wang, C.; Zhu, Y.; Fang, S.; Wang, Q.; Duan, M. A miniaturized oxygen sensor integrated on fiber surface based on evanescent-wave induced fluorescence quenching. J. Lumin. 2016, 179, 581–587. [Google Scholar] [CrossRef]
- Chang-Yen, D.A.; Gale, B.K. A novel integrated optical dissolved oxygen sensor for cell culture and micro total analysis systems, Technical Digest. In Proceedings of the MEMS 2002 Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 02CH37266), Las Vegas, NV, USA, USA, 24 January 2002; pp. 574–577. [Google Scholar]
- Yang, X.; Zheng, Y.; Luo, S.; Liu, Y.; Yuan, L. Microfluidic in-fiber oxygen sensor derivates from a capillary optical fiber with a ring-shaped waveguide. Sens. Actuators B Chem. 2013, 182, 571–575. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Luminescent sensing and imaging of oxygen: Fierce competition to the Clark electrode. BioEssays 2015, 37, 921–928. [Google Scholar] [CrossRef]
- Fang, J.; Zhou, J.; Liu, Y.; Wang, S.; Xu, S. Preliminary Study on Application Effect of Different Dissolved Oxygen Sensors in Online Water Environment Monitoring System Based on the Internet of Things. Shandong Agric. Sci. 2016, 4, 134–138. [Google Scholar] [CrossRef]
- Parra, L.; Lloret, G.; Lloret, J.; Rodilla, M. Physical sensors for precision aquaculture: A Review. IEEE Sens. J. 2018, 18, 3915–3923. [Google Scholar] [CrossRef]
- Hasumoto, H.; Imazu, T.; Miura, T.; Kogure, K. Use of an optical oxygen sensor to measure dissolved oxygen in seawater. J. Oceanogr. 2006, 62, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Bittig, H.C.; Körtzinger, A. Tackling oxygen optode drift: Near-surface and in-air oxygen optode measurements on a float provide an accurate in situ reference. J. Atmos. Ocean. Technol. 2015, 32, 1536–1543. [Google Scholar] [CrossRef]
- Edwards, B.; Murphy, D.; Janzen, C.; Larson, N. Calibration, response, and hysteresis in deep-sea dissolved oxygen measurements. J. Atmos. Ocean. Technol. 2010, 27, 920–931. [Google Scholar] [CrossRef]
- Wu, X.; Wu, X.; Inoue, T. Real-time in-situ Simultaneous Monitoring of Dissolved Oxygen and Materials Movements at a Vicinity of Micrometers from an Aquatic Plant by Combining Deflection of a Probe Beam and Fluorescence Quenching. Anal. Sci. 2017, 33, 351–357. [Google Scholar] [CrossRef]
- Bissi, L.; Placidi, P.; Scorzoni, A.; Elmi, I.; Zampolli, S. Environmental monitoring system compliant with the IEEE 1451 standard and featuring a simplified transducer interface. Sens. Actuators A Phys. 2007, 137, 175–184. [Google Scholar] [CrossRef]
- Mcneil, C.L.; D’Asaro, E.A. A calibration equation for oxygen optodes based on physical properties of the sensing foil. Limnol. Oceanogr. Methods 2014, 12, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Hu, X.; An, D. Design of an intelligent pH sensor based on IEEE1451. 2. IFAC PapersOnLine 2018, 51, 191–198. [Google Scholar] [CrossRef]
- Bushinsky, S.M.; Emerson, S. Marine biological production from in situ oxygen measurements on a profiling float in the subarctic Pacific Ocean. Glob. Biogeochem. Cycles 2015, 29, 2050–2060. [Google Scholar] [CrossRef]
- Pardo, A.; Cámara, L.; Cabré, J.; Perera, A.; Cano, X.; Marco, S.; Bosch, J. Gas measurement systems based on IEEE1451.2 standard. Sens. Actuators B Chem. 2006, 116, 11–16. [Google Scholar] [CrossRef]
- Shao, H.; Zhuang, J. Research into the Technology of Intelligent Sensors Based on IEEE1451 Standard. In Proceedings of the 2012 International Conference on Industrial Control and Electronics Engineering, Xi’an, China, 23–25 August 2012; pp. 1797–1799. [Google Scholar]
- Zhu, J.; Lei, J. Research on Intelligent sensor for dissolved oxygen. J. Xi’an Univ. Eng. Sci. Technol. 2007, 21, 649–652. [Google Scholar] [CrossRef]
- Lei, J.; Zhu, J.; Xuezong, M. Design of Compound and Intelligent Sensor for Dissolved Oxygen. Instrum. Anal. Monit. 2007, 2, 28–30. [Google Scholar] [CrossRef]
- Qi, X.; Shu, D.; Hao, W.; Chen, Y.L.; Chen, J. Development of Digital Microscale Dissolved Oxygen Analytical System. Procedia Eng. 2011, 15, 5232–5238. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Xu, Z. A new design of high-precision dissolved oxygen sensor. Transducer Microsyst. Technol. 2012, 2, 112–114. [Google Scholar] [CrossRef]
- Yang, Y. The Study and Design of Dissolved Oxygen Potency Sensor Based on Luorescence Quenching Principle; Qingdao Technological University: Qingdao, China, 2017. [Google Scholar]
- Zhang, T. Design of an In-Situ Dissolved Oxygen Detector Using Fluorescence Quenching; Zhejiang University: Zhejiang, China, 2013. [Google Scholar]
- Liao, H.; Qiu, Z.; Feng, G.; Zhang, Y. The research of dissolved oxygen detection system based on fluorescence quenching principle. In Proceedings of the 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, Harbin, China, 12–14 August 2011; pp. 3575–3578. [Google Scholar]
- Gao, M.; Zhang, F.; Tian, J. Dissolved oxygen online acquisition terminal based on wireless sensor network. In Proceedings of the 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, 12–14 October 2008; pp. 1–4. [Google Scholar]
- Chu, C.S.; Lin, K.Z.; Tang, Y.H. A new optical sensor for sensing oxygen based on phase shift detection. Sens. Actuators B Chem. 2016, 223, 606–612. [Google Scholar] [CrossRef]
- Chen, X.; Chang, J.; Wang, F.; Wang, Z.; Wei, W.; Liu, Y.; Qin, Z. A portable analog lock-in amplifier for accurate phase measurement and application in high-precision optical oxygen concentration detection. Photonic Sens. 2017, 7, 27–36. [Google Scholar] [CrossRef]
- Fu, G.; Sonkusale, S.R. A CMOS Luminescence Intensity and Lifetime Dual Sensor Based on Multicycle Charge Modulation. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, J.; Jiang, D.; Wang, L. Fiber optic oxygen sensor based on fluorescence quenching with high properties. Transducer Microsyst. Technol. 2001, 20, 9–11. [Google Scholar]
- Wu, Z. Study on Detection and Processing Technology of Weak Fluorescence Signal; Shanxi Normal University: Xi’an, China, 2015. [Google Scholar]
- Lo, K.P.; Groger, H.P.; Luo, S.; Churchill, R.J.; Waterbury, R.D. Loss compensation using digital-signal processing in fiber optic fluorescence sensors. In Proceedings of SPIE—The International Society for Optical Engineering; International Society for Optics and Photonics, 1996; Volume 2594, pp. 208–216. [Google Scholar] [CrossRef]
- Xu, M.; Yin, G.; Zhao, N.; Tan, Z.; Wang, X.; Dong, M. Detection Method of Dissolved Oxygen Concentration in Water Based on Time- Domain Fluorescence Lifetime. Acta Opt. Sin. 2018, 38, 39–44. [Google Scholar] [CrossRef]
- Stehning, C.; Holst, G.A. Addressing multiple indicators on a single optical fiber-digital signal processing approach for temperature compensated oxygen sensing. IEEE Sens. J. 2004, 4, 153–159. [Google Scholar] [CrossRef]
- Zhao, W. The Integrated Design and Study of Data Processing Algorithm within Online Dissolved Oxygen Meters; Southeast University: Nanjing, China, 2015. [Google Scholar]
- Guo, L.; Zhang, Y.; Yin, G.; Zhang, K.; Wang, Z. Phase-Locking Detection Technique of Fluorescence Lifetime. J. Atmos. Environ. Opt. 2012, 1, 71–75. [Google Scholar] [CrossRef]
- Tai, H.; Zeng, L.; Zhang, J.; Liu, S.; Li, D. Development of an Optical Dissolved Oxygen Sensor for Aquaculture Based on Direct Measurement of Fluorescence Lifetime. Sens. Lett. 2014, 12, 581–586. [Google Scholar] [CrossRef]
- Feng, W.; Zhou, N.; Chen, L.; Li, B. An optical sensor for monitoring of dissolved oxygen based on phase detection. J. Opt. 2013, 15, 055502. [Google Scholar] [CrossRef]
- Zhang, T.; Ye, S.M.; Han, J.Y.; Liu, J.F. An in Situ Dissolved Oxygen Monitoring System Based on Fluorescence Quenching Phase Detection. Adv. Mater. Res. 2012, 588, 968–973. [Google Scholar] [CrossRef]
- Shu, D.; Qiu, F.; Qi, X. Study of trace amount of digital dissolved oxygen analytical instrument. Electron. Meas. Technol. 2010, 33, 14–17. [Google Scholar] [CrossRef]
- Yin, T.; Huang, J.; Yang, X. Research and design of intelligent optical dissolved oxygen measuring instrument based on stm32f103. Autom. Instrum. 2015, 12, 183–185. [Google Scholar] [CrossRef]
- Bittig, H.C.; Körtzinger, A.; Neill, C.; van Ooijen, E.; Plant, J.N.; Hahn, J.; Emerson, S.R. Oxygen optode sensors: Principle, characterization, calibration, and application in the ocean. Front. Mar. Sci. 2018, 4, 429. [Google Scholar] [CrossRef]
- Bittig, H.C.; Fiedler, B.; Fietzek, P.; Körtzinger, A. Pressure response of Aanderaa and Sea-Bird oxygen optodes. J. Atmos. Ocean. Technol. 2015, 32, 2305–2317. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, Y. Research on stability of polarographic dissolved oxygen sensor. Transducer Microsyst. Technol. 2017, 36, 39–41. [Google Scholar] [CrossRef]
- Yatsenko, V.A.; Gouschcha, A.O.; Dobrovolsky, A.A.; Privalko, A.V.; Sushko, V.A. Intelligent sensor for integral estimation of water quality. Sens. Actuators B Chem. 1995, 29, 332–338. [Google Scholar] [CrossRef]
- Michelucci, U.; Baumgartner, M.; Venturini, F. Optical oxygen sensing with artificial intelligence. Sensors 2019, 19, 777. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S.; Li, J. High Precision Dissolved Oxygen Measuring Method Based on Multi-Source Information Fusion. Instrum. Tech. Sens. 2017, 2, 89–92. [Google Scholar] [CrossRef]
- Zhang, G.; Shao, H. Temperature dependence and compensation for the dissolved oxygen probe. Chin. J. Sens. Actuators 2006, 19, 323–327. [Google Scholar] [CrossRef]
- Huang, X.; Chang, Y.; Du, Z. Design of the precise intelligent dissolved-oxygenmeter based on ADuC834. Ind. Water Treat. 2008, 28, 58–61. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, P.; Zhu, M.; Deng, C.; Chen, P. The design of dissolved oxygen detection system based on C8051F020. In Proceedings of the 2011 Second International Conference on Digital Manufacturing & Automation, Zhangjiajie, China, 5–7 August 2011; pp. 1253–1255. [Google Scholar]
- Xin, L.; Chen, J.; Zhu, X. Development of trace amounts of dissolved oxygen sensor. Electron. Meas. Technol. 2014, 3, 89–92. [Google Scholar] [CrossRef]
- Hung, S.S.; Chang, H.C.; Chang, I.N. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection. Sensors 2016, 16, 2087. [Google Scholar] [CrossRef] [PubMed]
- Palma, A.J.; López-González, J.; Asensio, L.J.; Fernández-Ramos, M.D.; Capitán-Vallvey, L.F. Open air calibration with temperature compensation of a luminescence quenching-based oxygen sensor for portable instrumentation. Anal. Chem. 2007, 79, 3173–3179. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Tai, H.; Ma, D.; Li, D.; Zhao, L. Development of a smart dissolved oxygen sensor based on IEEE1451.2. Sens. Lett. 2011, 9, 1049–1054. [Google Scholar] [CrossRef]
- Li, F.; Wei, Y.; Chen, Y.; Li, D.; Zhang, X. An intelligent optical dissolved oxygen measurement method based on a fluorescent quenching mechanism. Sensors 2015, 15, 30913–30926. [Google Scholar] [CrossRef] [PubMed]
- Bin, L.; Zhuo, L.; Jie, L.; Junle, Q. Design of a PIC18F2520 based polarographic dissolved oxygen sensor. Shandong Sci. 2012, 25, 73–77. [Google Scholar] [CrossRef]
- Ding, Q.; Ma, D.; Li, D. Research and application on compensation and Calibration methods for smart sensor of dissolved oxygen. J. Shandong Agric. Univ. Nat. Sci. Ed. 2011, 4, 567–571. [Google Scholar] [CrossRef]
- Langdon, C. Dissolved oxygen monitoring system using a pulsed electrode: Design, performance, and evoluation. Deep Sea Res. Part A. Oceanogr. Res. Pap. 1984, 31, 1357–1367. [Google Scholar] [CrossRef]
- Jiale, F. Discussion on Calibration Method of Fluorescence Quenching Method Dissolved Oxygen Meter. Chem. Anal. Meterage 2014, 1, 83–85. [Google Scholar] [CrossRef]
- Hahn, F.; El Messery, W. Dissolved Oxygen Monitoring and Sensor Auto-Diagnostic in Carp Culture Tanks. In Proceedings of the International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011), Hong Kong, 12–13 December 2011; ASME: New York, NY, USA; p. 4. [Google Scholar]
- Eminaga, Y.; Brischwein, M.; Wiest, J.; Clauss, J.; Becker, S.; Wolf, B. Self calibration of a planar dissolved oxygen sensor. Sens. Actuators B Chem. 2013, 177, 785–791. [Google Scholar] [CrossRef]
- Chen, G.; Li, B. Dissolved Oxygen Detection Based on Light-to-Frequency Conversion. In Proceedings of the 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 October 2018; pp. 1302–1306. [Google Scholar]
- Coogan, J.; Dzwonkowski, B.; Lehrter, J. Effects of Coastal Upwelling and Downwelling on Hydrographic Variability and Dissolved Oxygen in Mobile Bay. J. Geophys. Res. Ocean. 2019, 124, 791–806. [Google Scholar] [CrossRef]
- Bittig, H.C.; Fiedler, B.; Scholz, R.; Krahmann, G.; Körtzinger, A. Time response of oxygen optodes on profiling platforms and its dependence on flow speed and temperature. Limnol. Oceanogr. Methods 2014, 12, 617–636. [Google Scholar] [CrossRef] [Green Version]
Electrode | Coefficient of Correlation (Determination) | Sensitivity | Linear Response Range | Detection Limit | Response Time | Reference |
---|---|---|---|---|---|---|
βCDSH 1+ FeTMPyP 2 + CDAuNP 3 | r = 0.999 | 5.5 μA·L·mg−1 | 0.2–6.5 mg·L−1 | 0.02 mg·L−1 | - | [54] |
Three electrodes: nickel–salen + platinum, SCE 4, platinum | r = 0.9976 | - | 3.95–9.2 mg·L−1 | 0.71 mg·L−1 | - | [55] |
Three electrodes: hemin, Ag, AgCl, platinum wire | R2 = 0.9872 | 8.5 μA∙L∙mg−1 (20.7μA·cm−2) | 2–7 mg·L−1 | - | 200 s | [56] |
Three electrodes: F-BDD 5 + boron-doped CVD 6, Ag, AgCl, Pt | R2 = 0.9988 | 0.1422 ± 0.006 nA·μM−1 | 0–273.75 μM | 0.63 μM | 0.01 s | [57] |
Three electrodes: RGO-Ag 7 + GCE 8, Ag, AgCl, platinum wire | R2 = 0.991 | 0.205 μA·μM−1 | 1–120 μM | 0.031 μM | <5 s | [59] |
Three electrodes: RuO2, AgPd, Ag, AgCl | R2 = 0.9694 | 0.560 μA L·mg−1 | 3–11.7 mg·L−1 | - | 4 min | [61] |
Three electrodes: nickel–salen + platinum, SCE, platinum | - | - | 3.95–9.20 mg·L−1 | 0.17 mg·L−1 | - | [62] |
Polarographic Sensor | Galvanic Cell-Type Sensor | |
---|---|---|
Precision | High | Lower |
Technology | More mature | Mature |
Response time | Long polarization time (approximately 5 to 15 min) | Short response time |
Service life | Long | Short (the lifetime is related to the electrode materials and redox reactions) |
External circuit | Polarography requires external circuits. | The galvanic method does not require external circuits. |
The intensity of the output | Stronger current than the galvanic-type sensor | The current is low (generally at the μA level) |
Applications | Polarographic sensors are troublesome to use outdoors | The galvanic sensor is suitable for outdoor use without an external circuit |
Common issues | These sensors all experience disturbances by chlorine, sulfur dioxide, iodine, bromine, electromagnetic interference, etc. |
Oxygen Indicator | Matrix | Emission Wavelength | Optical Fiber (yes/no, Y/N) | Sensitivity | Response Time | Reference |
---|---|---|---|---|---|---|
PtOEP 1 | PEMA 2 | 645 nm | Y | 15 (IN2/IO2 -1) | 41 ms | [110] |
Chlorophyll–zinc complex | Silica gel | 640/680 nm | N | - | - | [111] |
[Ru(dpp)3][(4-Clph)4B]2 3 | Silica gel | 604 nm | N | 3.6 ppm (I0/I -1) | <1 s | [113] |
PtOEP | PMMA | - | Y | T0/T -1 = 1.75 | <0.8 s | [115] |
PtOEP | PMMA | 647 nm | Y | KSV = 0.022 | - | [116] |
PEMA | KSV = 0.118 | - | ||||
PPMA 4 | KSV = 0.195 | <100 ms | ||||
[Ru(dpp)3]Cl2 | Sol–gel | 603 nm | Y | I0/I = 3.6 | 200 ms | [117] |
Ru(bpy)3Cl2 | Silica–Ni–P composite | 603 nm | N | I0/I100 = 2.49 | 300 s | [118] |
PtTFPP 5 and dye-entrapped core–shell silica nanoparticles | TEOS 6/C8 TEOS | 650 nm | Y | I0/I = 117 (0–40 mg/L) | 694 s | [119] |
Ru(dpp)32+ | TMOS 7/DiMe-DMOS 8 | 592 nm | N | I0/I = 16 (0–100%) | 100 s | [120] |
PdTFPP | Octyl-triEOS/TEOS sol-gel | 643 nm | Y | 0.0554 (40 °C) | 11 s | [127] |
PtOEP | 676 nm | 0.12 (40 °C) | 10 s | |||
Ru(dpp)32+ | 590 nm | 0.0015 (40 °C) | 10 s |
Winkler Method | Clark Method | Fluorescence Quenching Method | |
---|---|---|---|
Precision | As a benchmark method, the Winkler method has the highest detection accuracy. | The detection accuracy is good but is easily affected by water quality and electromagnetic interference. | The fluorescence quenching method is hardly affected by the water quality and has a high anti-electromagnetic interference ability; thus, the detection accuracy is high. |
Response time | The Winkler method is a laboratory method that is complex and takes the longest time. | The Clark method requires the polarization of the electrode (approximately 5 to 15 min), so the response time is long. | The fluorescence quenching method has the fastest response time (up to the ms level). |
Oxygen consumption | The titration process consumes oxygen. | The redox reaction at the electrode consumes oxygen. | The fluorescence quenching process is reversible and does not consume oxygen. |
Remote sensing | The Winkler method cannot easily achieve remote measurement and, usually, water samples must be analyzed in the laboratory. | The Clark method can achieve remote detection, but the signal transmission will be distorted; thus, the detection results are not accurate. | The fluorescence quenching method can use an optical fiber to transmit signals, with a low signal loss and long transmission distance, and can achieve remote detection (optical fibers can be up to 20 m long). |
Maintenance | No | The sensor-based Clark method requires frequent maintenance. | The sensor-based fluorescence quenching method does not require constant maintenance. |
Interference factors | Water turbidity, nitrite, iron ions, free chlorine, etc. | H2S, SO2, pH, electromagnetic interference, etc. | Cl2, etc. |
Application | Laboratory and fewer samples. | Agriculture, forestry and fishing, biological medicine, etc. | Agriculture, forestry and fishing, life sciences, strong electromagnetic interference, and other harsh environments. |
Market share | - | Low cost, wide application. | Large market share and high demand. |
Hardware | Software | Deviation (Precision) | Detection Range | Response Time | Reference | ||
---|---|---|---|---|---|---|---|
T 1 | S 2 | P 3 | |||||
Y | Y | Y | N | ±0.2 mg/L | 0–20 mg/L (0–40 °C) | - | [156] |
Y | Y | Y | Y | ≤±5% | 0–15 mg/L (0–60 °C) | - | [183] |
Y | Y | N | N | ≤±5% | - | - | [184] |
Y | Y | Y | Y | 0.1 mg/L | 0–20 mg/L (0–45 °C) | <10 s | [185] |
Y | Y | N | N | <1 μg/L (<3%) | - | <120 s | [58] |
Y | Y | N | N | ±0.1 mg/L (0.5%) | 0–20 mg/L | - | [158] |
Y | Y | Y | Y | Relative standard deviation (RSD) <2% (0.01 mg/L) | 0–20 mg/L | <3 min | [191] |
Y | Y | Y | Y | ±0.07 mg/L | 0–20 mg/L | - | [192] |
Y | Y | Y | Y | <1% | 0–20 mg/L | - | [193] |
Company | Product | Principle | Temperature Compensation | Salinity Compensation | Pressure Compensation | Accuracy | Response Time |
---|---|---|---|---|---|---|---|
Aanderaa | 4835 | luminescence quenching | The sensor has a thermistor to realize automatic temperature compensation. | Salinity compensation is required when salinity changes are >1 mS/cm. | Salinity compensation is required for pressure >100 m. | <8 µM | <10 s |
4831/4831F | <2 µM | <2s | |||||
4531 | <8 µM | <2 s | |||||
WTW | TriOxmatic 700 IQ | Polarographic | The sensor has a built-in NTC 1 to realize automatic temperature compensation (−5 to 60 °C). | Manually set compensation for 0–70 ppt. | Automatic compensation. | ±0.1 mg/L | 180 s |
TriOxmatic 702 IQ | ±0.01 mg/L | 30 s | |||||
FDO 700 IQ | Luminescence quenching | The sensor has a built-in NTC to realize automatic temperature compensation (−5 to 50 °C). | When the salinity is >0.1%, salinity compensation is carried out. | ±0.05 mg/L | <150 s | ||
FDO 701 IQ | ±0.1 mg/L | < 60 s | |||||
Mettler | SG9 | Fluorescence quenching | The sensor has a built-in NTC to realize automatic temperature compensation. | When the salinity is >1 ppt, manually input the salinity value and automatically compensate for the salinity (0–42 ppt). | The sensor has a barometer to automatically or manually compensate for atmospheric pressure. | ±0.1 mg/L | - |
SG6 | ±0.5% mg/L | 90 s | |||||
HACH | HACH LDOTM HQ10 | Fluorescence quenching | Sensor with 30 kΩ thermistor for automatic compensation (0–50 °C). | Automatic compensation (0–70‰). | Automatic compensation (400–1100 mBar). | ±0.1 mg/L | < 30 s |
HQ30d | The sensor has a built-in NTC to realize automatic temperature compensation. | The salinity measured by the conductivity electrode is automatically compensated. | Automatic pressure compensation. | - | - | ||
Sea-Bird Scientific | SBE 43 | Polarography | Due to the serious drift caused by dirt pollution, the temperature, salinity, and air pressure are compensated by the calibration formula. | - | - | ||
SBE 63 | Fluorescence quenching | Each SBE 63 is calibrated individually in a temperature-controlled bath. | Salinity and pressure impacts on sensor response are each checked at two separate points. | 0.1 mg/L | <6 s | ||
YSI | EcoSense ODO200 | Fluorescence quenching | Automatic temperature compensation. | Manually enter the salinity value to compensate | Manually input the pressure value to compensate (contained barometer) | ±0.15 mg/L | - |
Pro20 | Electrochemistry principle | All cable assemblies have built-in temperature sensors. | Manually set compensation for 0–70 ppt. | Automatic barometric pressure compensation. | ±0.2 mg/L | 8 s | |
ProSolo ODO | Fluorescence quenching | Built-in thermistors for temperature compensation (−5 to 50 °C) | Manually input the salinity value; the sensor allows real-time salinity compensation. | The sensor has a barometer. | ±0.1 mg/L (0–20 mg/L) | - | |
Kongsberg | CONTROS HydroFlash® O2 | Fluorescence quenching | - | - | - | ±1% | <3 s |
OxyGuard | Handy Polaris | Galvanic type | Self-temperature compensation. | Set the salinity value manually for automatic compensation (0–59 ppt). | - | ±1% | <20 s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Jiao, Y.; An, D.; Li, D.; Li, W.; Wei, Q. Review of Dissolved Oxygen Detection Technology: From Laboratory Analysis to Online Intelligent Detection. Sensors 2019, 19, 3995. https://doi.org/10.3390/s19183995
Wei Y, Jiao Y, An D, Li D, Li W, Wei Q. Review of Dissolved Oxygen Detection Technology: From Laboratory Analysis to Online Intelligent Detection. Sensors. 2019; 19(18):3995. https://doi.org/10.3390/s19183995
Chicago/Turabian StyleWei, Yaoguang, Yisha Jiao, Dong An, Daoliang Li, Wenshu Li, and Qiong Wei. 2019. "Review of Dissolved Oxygen Detection Technology: From Laboratory Analysis to Online Intelligent Detection" Sensors 19, no. 18: 3995. https://doi.org/10.3390/s19183995
APA StyleWei, Y., Jiao, Y., An, D., Li, D., Li, W., & Wei, Q. (2019). Review of Dissolved Oxygen Detection Technology: From Laboratory Analysis to Online Intelligent Detection. Sensors, 19(18), 3995. https://doi.org/10.3390/s19183995